Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 973: 176564, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614383

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.


Assuntos
Movimento Celular , Proliferação de Células , Macrófagos , Miócitos de Músculo Liso , Fator de Transcrição STAT3 , Transdução de Sinais , Triterpenos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Animais , Transdução de Sinais/efeitos dos fármacos , Humanos , Fator de Transcrição STAT3/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ratos Sprague-Dawley , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Monocrotalina , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Becaplermina/farmacologia , Remodelação Vascular/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia
2.
Front Cardiovasc Med ; 11: 1343804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410243

RESUMO

Background: Pulmonary arterial hypertension (PAH) is a severe and rare disease in the cardiopulmonary system. Its pathogenesis involves vascular remodeling of the pulmonary artery, which results in progressive increases in pulmonary arterial pressure. Chronically increased pulmonary arterial pressure causes right ventricular hypertrophy and subsequent right heart failure. Pulmonary vascular remodeling is attributed to the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are induced by enhanced Ca2+ signaling following the up-/down-regulation of ion channel expression. Objectives: In the present study, the functional expression of two-pore domain potassium KCNK channels was investigated in PASMCs from idiopathic PAH (IPAH) patients and experimental pulmonary hypertensive (PH) animals. Results: In IPAH-PASMCs, the expression of KCNK1/TWIK1 and KCNK2/TREK1 channels was up-regulated, whereas that of KCNK3/TASK1 and KCNK6/TWIK2 channels was down-regulated. The similar up-regulated expression of KCNK1 and KCNK2 channels was observed in the pulmonary arterial smooth muscles of monocrotaline-induced PH rats, Sugen 5416/hypoxia-induced PH rats, and hypoxia-induced PH mice. The facilitated proliferation of IPAH-PASMCs was suppressed by the KCNK channel blockers, quinine and tetrapentylammonium. The migration of IPAH-PASMCs was also suppressed by these channel blockers. Furthermore, increases in the proliferation and migration were inhibited by the siRNA knockdown of KCNK1 or KCNK2 channels. The siRNA knockdown also caused membrane depolarization and subsequent decrease in cytosolic [Ca2+]. The phosphorylated level of c-Jun N-terminal kinase (JNK) was elevated in IPAH-PASMCs compared to normal-PASMCs. The increased phosphorylation was significantly reduced by the siRNA knockdown of KCNK1 or KCNK2 channels. Conclusion: Collectively, these findings indicate that the up-regulated expression of KCNK1 and KCNK2 channels facilitates the proliferation and migration of PASMCs via enhanced Ca2+ signaling and JNK signaling pathway, which is associated with vascular remodeling in PAH.

3.
J Pharmacol Sci ; 153(2): 84-88, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640473

RESUMO

Pulmonary vessels play a pivotal role in oxygen circulation. We previously demonstrated that pimaric acid (PiMA) activated large-conductance Ca2+-activated K+ (BKCa) channels and inhibited voltage-dependent Ca2+ channels (VDCCs). In the present study, PiMA attenuated vasoconstriction induced by high K+ or endothelin-1 in rat pulmonary arterial smooth muscles (PASMs). PiMA also reduced high K+-induced cytosolic [Ca2+] increase in PASM cells. PiMA increased BKCa currents and decreased VDCC currents. BKCa channels and VDCCs were formed by the α/ß1 and α1C/α1D/ß2/ß3 subunits, respectively. These results indicate that PiMA induces vasorelaxation through the dual effects of BKCa channel activation and VDCC inhibition in PASMs.


Assuntos
Hipertensão Pulmonar , Vasoconstrição , Animais , Ratos , Canais de Cálcio Tipo L , Iodeto de Potássio , Músculo Liso
4.
Biol Pharm Bull ; 45(11): 1684-1691, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989293

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling of the pulmonary artery, which is mainly attributed to the excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) comprising the medial layer of pulmonary arteries. The activity of ion channels associated with cytosolic Ca2+ signaling regulates the pathogenesis of PAH. Limited information is currently available on the role of Cl- channels in PASMCs. Therefore, the functional expression of ClC3 channels/transporters was herein investigated in the PASMCs of normal subjects and patients with idiopathic pulmonary arterial hypertension (IPAH). Expression analyses revealed the upregulated expression of ClC3 channels/transporters at the mRNA and protein levels in IPAH-PASMCs. Hypoosmotic perfusion (230 mOsm) evoked swelling-activated Cl- currents (ICl-swell) in normal-PASMCs, whereas 100 µM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) exerted the opposite effects. The small interfering RNA (siRNA) knockdown of ClC3 did not affect ICl-swell. On the other hand, ICl-swell was larger in IPAH-PASMCs and inhibited by DIDS and the siRNA knockdown of ClC3. IPAH-PASMCs grew more than normal-PASMCs. The growth of IPAH-PASMCs was suppressed by niflumic acid and DIDS, but not by 9-anthracenecarboxylic acid or T16Ainh-A01. The siRNA knockdown of ClC3 also inhibited the proliferation of IPAH-PASMCs. Collectively, the present results indicate that upregulated ClC3 channels/transporters are involved in ICl-swell and the excessive proliferation of IPAH-PASMCs, thereby contributing to the pathogenesis of PAH. Therefore, ClC3 channels/transporters have potential as a target of therapeutic drugs for the treatment of PAH.


Assuntos
Miócitos de Músculo Liso , Humanos , Hipertensão Pulmonar Primária Familiar/tratamento farmacológico , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/patologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , RNA Interferente Pequeno/farmacologia , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA