Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375652

RESUMO

Aniba rosiodora has been exploited since the end of the nineteenth century for its essential oil, a valuable ingredient in the perfumery industry. This species occurs mainly in Northern South America, and the morphological similarity among different Aniba species often leads to misidentification, which impacts the consistency of products obtained from these plants. Hence, we compared the profiles of volatile organic compounds (essential oils) and non-volatile organic compounds (methanolic extracts) of two populations of A. rosiodora from the RESEX and FLONA conservation units, which are separated by the Tapajós River in Western Pará State. The phytochemical profile indicated a substantial difference between the two populations: samples from RESEX present α-phellandrene (22.8%) and linalool (39.6%) in their essential oil composition, while samples from FLONA contain mainly linalool (83.7%). The comparison between phytochemical profiles and phylogenetic data indicates a clear difference, implying genetic distinction between these populations.


Assuntos
Lauraceae/química , Óleos Voláteis/química , Óleos de Plantas/química , Monoterpenos Acíclicos/química , Brasil , Monoterpenos Cicloexânicos/química , Florestas , Lauraceae/genética , Monoterpenos/química , Monoterpenos/isolamento & purificação , Filogenia
2.
Toxins (Basel) ; 11(5)2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137619

RESUMO

Variability in snake venom composition has been frequently reported and correlated to the adaptability of snakes to environmental conditions. Previous studies report plasticity for the venom phenotype. However, these observations are not conclusive, as the results were based on pooled venoms, which present high individual variability. Here we tested the hypothesis of plasticity by influence of confinement and single diet type in the venom composition of 13 adult specimens of Bothrops atrox snakes, maintained under captivity for more than three years. Individual variability in venom composition was observed in samples extracted just after the capture of the snakes. However, composition was conserved in venoms periodically extracted from nine specimens, which presented low variability restricted to the less abundant components. In a second group, composed of four snakes, drastic changes were observed in the venom samples extracted at different periods, mostly related to snake venom metalloproteinases (SVMPs), the core function toxins of B. atrox venom, which occurred approximately between 400 and 500 days in captivity. These data show plasticity in the venom phenotype during the lifetime of adult snakes maintained under captive conditions. Causes or functional consequences involved in the phenotype modification require further investigations.


Assuntos
Bothrops , Venenos de Crotalídeos/análise , Animais , Variação Biológica Individual , Venenos de Crotalídeos/enzimologia , Feminino , Metaloproteases/química , Fenótipo , Fosfolipases A2/química , Proteínas de Répteis/química , Serina Proteases/química
3.
J Proteomics ; 181: 60-72, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29621647

RESUMO

Elucidating the molecular mechanisms underlying snake venom variability provides important clues for understanding how the biological functions of this powerful toxic arsenal evolve. We analyzed in detail individual transcripts and venom protein isoforms produced by five specimens of a venomous snake (Bothrops atrox) from two nearby but genetically distinct populations from the Brazilian Amazon rainforest which show functional similarities in venom properties. Individual variation was observed among the venoms of these specimens, but the overall abundance of each general toxin family was conserved both in transcript and in venom protein levels. However, when expression of independent paralogues was analyzed, remarkable differences were observed within and among each toxin group, both between individuals and between populations. Transcripts for functionally essential venom proteins ("core function" proteins) were highly expressed in all specimens and showed similar transcription/translation rates. In contrast, other paralogues ("adaptive" proteins) showed lower expression levels and the toxins they coded for varied among different individuals. These results provide support for the inferences that (a) expression and translational differences play a greater role in defining adaptive variation in venom phenotypes than does sequence variation in protein coding genes and (b) convergent adaptive venom phenotypes can be generated through different molecular mechanisms. SIGNIFICANCE: Analysis of individual transcripts and venom protein isoforms produced by specimens of a venomous snake (Bothrops atrox), from the Brazilian Amazon rainforest, revealed that transcriptional and translational mechanisms contribute to venom phenotypic variation. Our finding of evidence for high expression of toxin proteins with conserved function supports the hypothesis that the venom phenotype consists of two kinds of proteins: conserved "core function" proteins that provide essential functional activities with broader relevance and less conserved "adaptive" proteins that vary in expression and may permit customization of protein function. These observations allowed us to suggest that genetic mechanisms controlling venom variability are not restricted to selection of gene copies or mutations in structural genes but also to selection of the mechanisms controlling gene expression, contributing to the plasticity of this important phenotype for venomous snakes.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/metabolismo , Proteoma/metabolismo , Animais , Especificidade da Espécie
4.
J Proteomics ; 159: 32-46, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28274896

RESUMO

Venom variability is commonly reported for venomous snakes including Bothrops atrox. Here, we compared the composition of venoms from B. atrox snakes collected at Amazonian conserved habitats (terra-firme upland forest and várzea) and human modified areas (pasture and degraded areas). Venom samples were submitted to shotgun proteomic analysis as a whole or compared after fractionation by reversed-phase chromatography. Whole venom proteomes revealed a similar composition among the venoms with predominance of SVMPs, CTLs, and SVSPs and intermediate amounts of PLA2s and LAAOs. However, when distribution of particular isoforms was analyzed by either method, the venom from várzea snakes showed a decrease in hemorrhagic SVMPs and an increase in SVSPs, and procoagulant SVMPs and PLA2s. These differences were validated by experimental approaches including both enzymatic and in vivo assays, and indicated restrictions in respect to antivenom efficacy to variable components. Thus, proteomic analysis at the isoform level combined to in silico prediction of functional properties may indicate venom biological activity. These results also suggest that the prevalence of functionally distinct isoforms contributes to the variability of the venoms and could reflect the adaptation of B. atrox to distinct prey communities in different Amazon habitats. BIOLOGICAL SIGNIFICANCE: In this report, we compared isoforms present in venoms from snakes collected at different Amazonian habitats. By means of a species venom gland transcriptome and the in silico functional prediction of each isoform, we were able to predict the principal venom activities in vitro and in animal models. We also showed remarkable differences in the venom pools from snakes collected at the floodplain (várzea habitat) compared to other habitats. Not only was this venom less hemorrhagic and more procoagulant, when compared to the venom pools from the other three habitats studied, but also this enhanced procoagulant activity was not efficiently neutralized by Bothrops antivenom. Thus, using a functional proteomic approach, we highlighted intraspecific differences in B. atrox venom that could impact both in the ecology of snakes but also in the treatment of snake bite patients in the region.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/biossíntese , Ecossistema , Glândulas Exócrinas/metabolismo , Proteômica , Animais , Bothrops/genética , Brasil , Venenos de Crotalídeos/genética , Transcriptoma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA