Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816660

RESUMO

Dose-limiting toxicity poses a major limitation to the clinical utility of targeted cancer therapies, often arising from target engagement in nonmalignant tissues. This obstacle can be minimized by targeting cancer dependencies driven by proteins with tissue-restricted and/or tumor-restricted expression. In line with another recent report, we show here that, in acute myeloid leukemia (AML), suppression of the myeloid-restricted PIK3CG/p110γ-PIK3R5/p101 axis inhibits protein kinase B/Akt signaling and compromises AML cell fitness. Furthermore, silencing the genes encoding PIK3CG/p110γ or PIK3R5/p101 sensitizes AML cells to established AML therapies. Importantly, we find that existing small-molecule inhibitors against PIK3CG are insufficient to achieve a sustained long-term antileukemic effect. To address this concern, we developed a proteolysis-targeting chimera (PROTAC) heterobifunctional molecule that specifically degrades PIK3CG and potently suppresses AML progression alone and in combination with venetoclax in human AML cell lines, primary samples from patients with AML and syngeneic mouse models.

2.
Amino Acids ; 55(12): 1775-1800, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37330416

RESUMO

Dysregulated human peptidases are implicated in a large variety of diseases such as cancer, hypertension, and neurodegeneration. Viral proteases for their part are crucial for the pathogens' maturation and assembly. Several decades of research were devoted to exploring these precious therapeutic targets, often addressing them with synthetic substrate-based inhibitors to elucidate their biological roles and develop medications. The rational design of peptide-based inhibitors offered a rapid pathway to obtain a variety of research tools and drug candidates. Non-covalent modifiers were historically the first choice for protease inhibition due to their reversible enzyme binding mode and thus presumably safer profile. However, in recent years, covalent-irreversible inhibitors are having a resurgence with dramatic increase of their related publications, preclinical and clinical trials, and FDA-approved drugs. Depending on the context, covalent modifiers could provide more effective and selective drug candidates, hence requiring lower doses, thereby limiting off-target effects. Additionally, such molecules seem more suitable to tackle the crucial issue of cancer and viral drug resistances. At the frontier of reversible and irreversible based inhibitors, a new drug class, the covalent-reversible peptide-based inhibitors, has emerged with the FDA approval of Bortezomib in 2003, shortly followed by 4 other listings to date. The highlight in the field is the breathtakingly fast development of the first oral COVID-19 medication, Nirmatrelvir. Covalent-reversible inhibitors can hipothetically provide the safety of the reversible modifiers combined with the high potency and specificity of their irreversible counterparts. Herein, we will present the main groups of covalent-reversible peptide-based inhibitors, focusing on their design, synthesis, and successful drug development programs.


Assuntos
Neoplasias , Inibidores de Proteases , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Ligação Proteica , Peptídeos/farmacologia
3.
Chemistry ; 28(33): e202201402, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35604354

RESUMO

Invited for the cover of this issue is the collaborative research team coordinated by Arie van der Lee at the University of Montpellier. The image depicts chiral channels with highly mobile water molecules resulting from the robust self-organization of a simple achiral acetamide. Fully reversible release and re-uptake of water molecules takes place near ambient conditions, with efficient water transport and a good selectivity against NaCl suggesting it to be an efficient candidate for desalination processes. Read the full text of the article at 10.1002/chem.20200383.


Assuntos
Aquaporinas , Água , Acetamidas
4.
Chemistry ; 28(33): e202200383, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35420228

RESUMO

Achiral 2-hydroxy-N-(diphenylmethyl)acetamide (HNDPA) crystallizes in the P61 chiral space group as a hydrate, building up permeable chiral crystalline helical water channels. The crystallization-driven chiral self-resolution process is highly robust, with the same air-stable crystalline form readily obtained under a variety of conditions. Interestingly, the HNDPA supramolecular helix inner pore is filled by a helical water wire. The whole edifice is mainly stabilized by robust hydrogen bonds involving the HNDPA amide bonds and CH… π interactions between the HNDPA phenyl groups. The crystalline structure shows breathing behavior, with completely reversible release and re-uptake of water inside the chiral channel under ambient conditions. Importantly, the HNDPA channel is able to transport water very efficiently and selectively under biomimetic conditions. With a permeability per channel of 3.3 million water molecules per second in large unilamellar vesicles (LUV) and total selectivity against NaCl, the HNDPA channel is a very promising functional nanomaterial for future applications.


Assuntos
Aquaporinas , Água , Acetamidas , Cristalização , Ligação de Hidrogênio , Água/química
5.
Org Lett ; 23(16): 6412-6416, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34369154

RESUMO

A simple phosgene- and halogen-free method for synthesizing α-amino acid N-carboxyanhydrides (NCAs) is described. The reaction between Boc-protected α-amino acids and T3P reagent gave the corresponding NCA derivatives in good yield and purity with no detectable epimerization. The process is safe, is easy-to-operate, and does not require any specific installation. It generates nontoxic, easy to remove byproducts. It can apply to the preparation of NCAs for the on-demand on-site production of either little or large quantities.

6.
J Med Chem ; 64(15): 10834-10848, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34266235

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9), identified as a regulator of low-density lipoprotein receptor (LDLR), plays a major role in cardiovascular diseases (CVD). Recently, Pep2-8, a small peptide with discrete three-dimensional structure, was found to inhibit the PCSK9/LDLR interaction. In this paper, we describe the modification of this peptide using stapled peptide and SIP technologies. Their combination yielded potent compounds such as 18 that potently inhibited the binding of PCSK9 to LDLR (KD = 6 ± 1 nM) and restored in vitro LDL uptake by HepG2 cells in the presence of PCSK9 (EC50 = 175 ± 40 nM). The three-dimensional structures of key peptides were extensively studied by circular dichroism and nuclear magnetic resonance, and molecular dynamics simulations allowed us to compare their binding mode to tentatively rationalize structure-activity relationships (SAR).


Assuntos
Lisina/farmacologia , Inibidores de PCSK9 , Peptídeos/farmacologia , Inibidores de Serina Proteinase/farmacologia , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Lisina/química , Modelos Moleculares , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Pró-Proteína Convertase 9/metabolismo , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade
7.
Gels ; 7(2)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203914

RESUMO

Promising strategies for cartilage regeneration rely on the encapsulation of mesenchymal stromal cells (MSCs) in a hydrogel followed by an injection into the injured joint. Preclinical and clinical data using MSCs embedded in a collagen gel have demonstrated improvements in patients with focal lesions and osteoarthritis. However, an improvement is often observed in the short or medium term due to the loss of the chondrocyte capacity to produce the correct extracellular matrix and to respond to mechanical stimulation. Developing novel biomimetic materials with better chondroconductive and mechanical properties is still a challenge for cartilage engineering. Herein, we have designed a biomimetic chemical hydrogel based on silylated collagen-mimetic synthetic peptides having the ability to encapsulate MSCs using a biorthogonal sol-gel cross-linking reaction. By tuning the hydrogel composition using both mono- and bi-functional peptides, we succeeded in improving its mechanical properties, yielding a more elastic scaffold and achieving the survival of embedded MSCs for 21 days as well as the up-regulation of chondrocyte markers. This biomimetic long-standing hybrid hydrogel is of interest as a synthetic and modular scaffold for cartilage tissue engineering.

8.
Acc Chem Res ; 54(3): 685-696, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33464823

RESUMO

The improvement of molecular diversity is one of the major concerns of chemists since the continuous development of original synthetic molecules provides unique scaffolds usable in organic and bioorganic chemistry. The challenge is to develop versatile platforms with highly controlled chemical three-dimensional space thanks to controlled chirality and conformational restraints. In this respect, cyclic ß-amino acids are of great interest with applications in various fields of chemistry. In addition to their intrinsic biological properties, they are important precursors for the synthesis of new generations of bioactive compounds such as antibiotics, enzyme inhibitors, and antitumor agents. They have also been involved in asymmetric synthesis as efficient organo-catalysts in their free form and as derivatives. Finally, constrained cyclic ß-amino acids have been incorporated into oligomers to successfully stabilize original structures in foldamer science with recent successes in health, material science, and catalysis. Over the last ∼10 years, we focused on bicyclic ß-amino acids possessing a bicyclo[2.2.2]octane structure. This latter is a structural key element in numerous families of biologically active natural and synthetic products and is an interesting template for asymmetric synthesis. Nonetheless, reported studies on bicyclic carbo-bridged compounds are rather limited compared to those on bicyclic-fused and heterobridged derivatives. In this Account, we particularly focused on the synthesis and applications of the 1-aminobicyclo[2.2.2]octane-2-carboxylic acid, named, ABOC, and its derivatives. This highly constrained bicyclic ß-amino acid, with a sterically hindered bridgehead primary amine and an endocyclic chiral center, displays drastically reduced conformational freedom. In addition, its high bulkiness strongly impacts the spatial orientation of the appended functionalities and the conformation of adjacent building blocks. Thus, we have first expanded a fundamental synthetic work by a wide ranging study in the field of foldamers, in the design of various stable peptide/peptidomimetic helical structures incorporating the ABOC residue (11/9-, 18/16-, 12/14/14-, and 12/10-helices). In addition, such bicyclic residue was fully compatible with and stabilized the canonical oligourea helix, whereas very few cyclic ß-amino acids have been incorporated into oligoureas. In addition, we have pursued with the synthesis of some ABOC derivatives, in particular the 1,2-diaminobicyclo[2.2.2]octane chiral diamine, named DABO, and its investigation in chiral catalytic systems. Covalent organo-catalysis of the aldol reaction using ABOC-containing tripeptide catalysts provided a range of aldol products with high enantioselectivity. Moreover, the double reductive condensation of DABO with various aldehydes allowed the building of new chiral ligands that proved their efficiency in the copper-catalyzed asymmetric Henry reaction.

9.
Nanomaterials (Basel) ; 10(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255624

RESUMO

Small interfering RNAs (siRNAs) are promising molecules for developing new therapies based on gene silencing; however, their delivery into cells remains an issue. In this study, we took advantage of stapled peptide technology that has emerged as a valuable strategy to render natural peptides more structured, resistant to protease degradation and more bioavailable, to develop short carriers for siRNA delivery. From the pool of stapled peptides that we have designed and synthesized, we identified non-toxic vectors that were able to efficiently encapsulate siRNA, transport them into the cell and induce gene silencing. Remarkably, the most efficient stapled peptide (JMV6582), is composed of only eight amino-acids and contains only two cationic charges.

10.
Chem Commun (Camb) ; 56(57): 7921-7924, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32529998

RESUMO

The insertion of cyclic building blocks in oligoureas to stabilize or modulate the properties of the 12/14-helix was often fruitless. We herein propose a fully compatible highly constrained building block that could be incorporated into oligoureas to develop highly stable and functional oligoureas helices.


Assuntos
Ureia/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Ureia/análogos & derivados
11.
Theranostics ; 10(5): 2008-2028, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104498

RESUMO

CDK4/cyclin D kinase constitutes an attractive pharmacological target for development of anticancer therapeutics, in particular in KRAS-mutant lung cancer patients, who have a poor prognosis and no targeted therapy available yet. Although several ATP-competitive inhibitors of CDK4 have been developed for anticancer therapeutics, they suffer from limited specificity and efficacy. Methods: As an alternative to ATP-competitive inhibitors we have designed a stapled peptide to target the main interface between CDK4 and cyclin D, and have characterized its physico-chemical properties and affinity to bind cyclin D1. Results: We have validated a positive correlation between CDK4/cyclin D level and KRAS mutation in lung cancer patients. The stapled peptide enters cells rapidly and efficiently, and inhibits CDK4 kinase activity and proliferation in lung cancer cells. Its intrapulmonary administration in mice enables its retention in orthotopic lung tumours and complete inhibition of their growth when co-administered with Abemaciclib. Conclusion: The stapled peptide targeting the main interface between CDK4 and cyclin D provides promising therapeutic perspectives for patients with lung cancer.


Assuntos
Aminopiridinas/farmacologia , Benzimidazóis/farmacologia , Ciclina D/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/efeitos dos fármacos , Aminopiridinas/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzimidazóis/administração & dosagem , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Mutação , Imagem Óptica/métodos , Peptídeos/administração & dosagem , Peptídeos/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
12.
ACS Omega ; 5(6): 2640-2647, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32095687

RESUMO

An inorganic sol-gel polymerization process was used as a cross-linking reaction during three-dimensional (3D) bioprinting of cell-containing hydrogel scaffolds. Hybrid hydroxypropyl methyl cellulose (HPMC), with a controlled ratio of silylation, was prepared and isolated as a 3D-network precursor. When dissolved in a biological buffer containing human mesenchymal stem cells, it yields a bioink that can be printed during polymerization by extrusion. It is worth noting that the sol-gel process proceeded at pH 7.4 using biocompatible mode of catalysis (NaF and glycine). The printing window was determined by rheology and viscosity measurements. The physicochemical properties of hydrogels were studied. Covalent functionalization of the network can be easily performed by adding a triethoxysilyl-containing molecule; a fluorescent hybrid molecule was used as a proof of concept.

13.
Cell Rep ; 29(12): 4159-4171.e6, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851940

RESUMO

The two related members of the vasohibin family, VASH1 and VASH2, encode human tubulin detyrosinases. Here we demonstrate that, in contrast to VASH1, which requires binding of small vasohibin binding protein (SVBP), VASH2 has autonomous tubulin detyrosinating activity. Moreover, we demonstrate that SVBP acts as a bona fide activator of both enzymes. Phylogenetic analysis of the vasohibin family revealed that regulatory diversification of VASH-mediated tubulin detyrosination coincided with early vertebrate evolution. Thus, as a model organism for functional analysis, we used Trypanosoma brucei (Tb), an evolutionarily early-branched eukaryote that possesses a single VASH and encodes a terminal tyrosine on both α- and ß-tubulin tails, both subject to removal. Remarkably, although detyrosination levels are high in the flagellum, TbVASH knockout parasites did not present any noticeable flagellar abnormalities. In contrast, we observed reduced proliferation associated with profound morphological and mitotic defects, underscoring the importance of tubulin detyrosination in cell division.


Assuntos
Proteínas Angiogênicas/metabolismo , Evolução Biológica , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Trypanosoma brucei brucei/metabolismo , Tirosina/metabolismo , Proteínas Angiogênicas/química , Proteínas Angiogênicas/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cristalografia por Raios X , Flagelos/metabolismo , Células HEK293 , Humanos , Microtúbulos/metabolismo , Mitose , Filogenia , Conformação Proteica , Processamento de Proteína Pós-Traducional , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento , Tirosina/química , Tirosina/genética
14.
Chemistry ; 24(70): 18795-18800, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30277633

RESUMO

12/10-Helices constitute suitable templates that can be used to design original structures. Nevertheless, they often suffer from a weak stability in polar solvents because they exhibit a mixed hydrogen-bond network resulting in a small macrodipole. In this work, stable and functionalizable 12/10-helices were developed by alternating a highly constrained ß2, 3, 3 -trisubstituted bicyclic amino acid (S)-1-aminobicyclo[2.2.2]octane-2-carboxylic acid ((S)-ABOC) and an acyclic substituted ß-homologated proteinogenic amino acid (l-ß3 -hAA). Based on NMR spectroscopic analysis, it was shown that such mixed ß-peptides display well-defined right-handed 12/10-helices in polar, apolar, and chaotropic solvents; that are, CD3 OH, CDCl3 , and [D6 ]DMSO, respectively. The stability of the hydrogen bonds forming the C10 and C12 pseudocycles as well as the benefit provided by the use of the constrained bicyclic ABOC versus typical acyclic ß-amino acids sequences when designing 12/10-helix were investigated using NH/ND NMR exchange experiments and DFT calculations in various solvents. These studies showed that the ß3 -hAA/(S)-ABOC helix displayed a more stable hydrogen-bond network through specific stabilization of the C10 pseudocycles involving the bridgehead NH of the ABOC bicyclic scaffold.


Assuntos
Aminoácidos/química , Peptídeos/química , Compostos Bicíclicos com Pontes/química , Dicroísmo Circular , Ligação de Hidrogênio , Ressonância Magnética Nuclear Biomolecular , Octanos/química , Estabilidade Proteica , Estrutura Secundária de Proteína , Solventes/química
15.
Org Biomol Chem ; 16(19): 3576-3583, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29693098

RESUMO

1,4-Disubstituted-1,2,3-triazole (Tz) is widely used in peptides as a trans-amide bond mimic, despite having hazardous effects on the native peptide activity. The impact of amide bond substitution by Tz on peptide secondary structures is scarcely documented. We performed a Tz scan, by systematically replacing peptide bonds following the Aib residues with Tz on two model peptaibols: alamethicin F50/5 and bergofungin D, which adopt stable α- and 310 helices, respectively. We observed that the Tz insertion, whatever its position in the peptide sequences, abolished their antimicrobial activity. The structural consequences of this insertion were further investigated using CD, NMR and X-ray diffraction. Importantly, five crystal structures that were incorporated with Tz were solved, showing various degrees of alteration of the helical structures, from minor structural perturbation of the helix to partial disorder. Together, these results showed that Tz insertions impair helical secondary structures.

16.
Chembiochem ; 19(7): 696-705, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377388

RESUMO

Non-cationic and amphipathic indoloazepinone-constrained (Aia) oligomers have been synthesized as new vectors for intracellular delivery. The conformational preferences of the [l-Aia-Xxx]n oligomers were investigated by circular dichroism (CD) and NMR spectroscopy. Whereas Boc-[l-Aia-Gly]2,4 -OBn oligomers 12 and 13 and Boc-[l-Aia-ß3 -h-l-Ala]2,4 -OBn oligomers 16 and 17 were totally or partially disordered, Boc-[l-Aia-l-Ala]2 -OBn (14) induced a typical turn stabilized by C5 - and C7 -membered H-bond pseudo-cycles and aromatic interactions. Boc-[l-Aia-l-Ala]4 -OBn (15) exhibited a unique structure with remarkable T-shaped π-stacking interactions involving the indole rings of the four l-Aia residues forming a dense hydrophobic cluster. All of the proposed FITC-6-Ahx-[l-Aia-Xxx]4 -NH2 oligomers 19-23, with the exception of FITC-6-Ahx-[l-Aia-Gly]4 -NH2 (18), were internalized by MDA-MB-231 cells with higher efficiency than the positive references penetratin and Arg8 . In parallel, the compounds of this series were successfully explored in an in vitro blood-brain barrier (BBB) permeation assay. Although no passive diffusion permeability was observed for any of the tested Ac-[l-Aia-Xxx]4 -NH2 oligomers in the PAMPA model, Ac-[l-Aia-l-Arg]4 -NH2 (26) showed significant permeation in the in vitro cell-based human model of the BBB, suggesting an active mechanism of cell penetration.


Assuntos
Azepinas/metabolismo , Barreira Hematoencefálica/metabolismo , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/metabolismo , Portadores de Fármacos/metabolismo , Indóis/metabolismo , Animais , Azepinas/síntese química , Azepinas/toxicidade , Bovinos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/toxicidade , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Humanos , Indóis/síntese química , Indóis/toxicidade , Conformação Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/metabolismo , Peptidomiméticos/toxicidade
17.
J Mater Chem B ; 6(12): 1782-1790, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32254250

RESUMO

Relying on a membrane-disturbing mechanism of action and not on any intracellular target, antimicrobial peptides (AMP) are attractive compounds to be grafted on the surface of implantable materials such as silicone catheters or titanium surgical implants. AMP sequences often display numerous reactive functions (e.g. amine, carboxylic acid) on their side chains and straightforward conjugation chemistries could lead to uncontrolled covalent grafting, random orientation, and non-homogenous density. To achieve an easy and site specific covalent attachment of unprotected peptides on titanium surfaces, we designed hybrid silylated biomolecules based on the temporin-SHa amphipathic helical antimicrobial sequence. With the grafting reaction being chemoselective, we designed five analogues displaying the silane anchoring function at the N-ter, C-ter or at different positions inside the sequence to get an accurate control of the orientation. Grafting density calculations were performed by XPS and the influence of the orientation of the peptide on the surface was clearly demonstrated by the measure of antimicrobial activity. Temporin amphipathic helices are described to permeabilize the bacterial membrane by interacting in a parallel orientation with it. Our results move in the direction of this mechanism as the selective grafting of hybrid temporin 2 through a lysine placed at the center of the peptide sequence, resulted in better biofilm growth inhibition of E. coli and S. epidermis than substrates in which temporins were grafted via their C- or N-terminus.

18.
Chembiochem ; 18(21): 2110-2114, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-28863239

RESUMO

Different intracellular delivery systems of bioactive compounds have been developed, including cell-penetrating peptides. Although usually nontoxic and biocompatible, these vectors share some of the general drawbacks of peptides, notably low bioavailability and susceptibility to protease degradation, that limit their use. Herein, the conversion of short peptide sequences into poly-α-amino-γ-lactam foldamers that adopt a ribbon-like structure is investigated. This template is used to distribute critical cationic and/or hydrophobic groups on both sides of the backbone, leading to potent short, cell-permeable foldamers with a low positive-charge content. The lead compound showed dramatically improved protease resistance and was able to efficiently deliver a biologically relevant cargo inside cells. This study provided a simple strategy to convert short peptide sequences into efficient protease-resistant cell-penetrating foldamers.


Assuntos
Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Lactamas/farmacocinética , Polímeros/farmacocinética , Linhagem Celular Tumoral , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactamas/química , Estrutura Molecular , Polímeros/química
19.
ChemMedChem ; 11(23): 2582-2587, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922213

RESUMO

Radiolabeling of ligands is still the gold standard in the study of high-affinity receptor-ligand interactions. In an effort toward safer and simpler alternatives to the use of radioisotopes, we developed a quantitative and highly sensitive matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) method that relies on the use of chemically tagged ligands designed to be specifically detectable when present as traces in complex biological mixtures such as cellular lysates. This innovative technology allows easy, sensitive detection and accurate quantification of analytes at the sub-nanomolar level. After statistical validation, we were able to perform pharmacological evaluations of G protein-coupled receptor (V1A-R)-ligand interactions. Both saturation and competitive binding assays were successfully processed.


Assuntos
Técnicas de Química Analítica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Ligação Competitiva , Células CHO , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Cricetinae , Cricetulus , Marcação por Isótopo , Ligantes , Peptídeos/síntese química , Peptídeos/química , Receptores Acoplados a Proteínas G/metabolismo
20.
Chemistry ; 22(39): 14022-14028, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27515561

RESUMO

Protein arginine N-methyl transferases (PRMTs) belong to a family of enzymes that modulate the epigenetic code through modifications of histones. In the present study, peptides emerging from a phage display screening were modified in the search for PRMT inhibitors through substitution with non-proteinogenic amino acids, N-alkylation of the peptide backbone, and incorporation of constrained dipeptide mimics. One of the modified peptides (23) showed an increased inhibitory activity towards several PRMTs in the low µm range and the conformational preference of this peptide was investigated and compared with the original hit using circular dichroism and NMR spectroscopy. Introducing two constrained tryptophan residue mimics (l-Aia) spaced by a single amino acid was found to induce a unique turn structure stabilized by a hydrogen bond and aromatic π-stacking interaction between the two l-Aia residues.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Alquilação , Sequência de Aminoácidos , Técnicas de Visualização da Superfície Celular , Dipeptídeos/síntese química , Dipeptídeos/química , Dipeptídeos/farmacologia , Inibidores Enzimáticos/síntese química , Humanos , Modelos Moleculares , Conformação Molecular , Peptidomiméticos/síntese química , Proteína-Arginina N-Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA