Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(29): eabm8780, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35857848

RESUMO

Recently developed KRASG12C inhibitory drugs are beneficial to lung cancer patients harboring KRASG12C mutations, but drug resistance frequently develops. Because of the immunosuppressive nature of the signaling network controlled by oncogenic KRAS, these drugs can indirectly affect antitumor immunity, providing a rationale for their combination with immune checkpoint blockade. In this study, we have characterized how KRASG12C inhibition reverses immunosuppression driven by oncogenic KRAS in a number of preclinical lung cancer models with varying levels of immunogenicity. Mechanistically, KRASG12C inhibition up-regulates interferon signaling via Myc inhibition, leading to reduced tumor infiltration by immunosuppressive cells, enhanced infiltration and activation of cytotoxic T cells, and increased antigen presentation. However, the combination of KRASG12C inhibitors with immune checkpoint blockade only provides synergistic benefit in the most immunogenic tumor model. KRASG12C inhibition fails to sensitize cold tumors to immunotherapy, with implications for the design of clinical trials combining KRASG12C inhibitors with anti-PD1 drugs.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Inibidores de Checkpoint Imunológico , Interferons , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
2.
Commun Biol ; 5(1): 9, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013519

RESUMO

Tumors generate an immune-suppressive environment that prevents effective killing of tumor cells by CD8+ cytotoxic T cells (CTL). It remains largely unclear upon which cell type and at which stage of the anti-tumor response mediators of suppression act. We have combined an in vivo tumor model with a matching in vitro reconstruction of the tumor microenvironment based on tumor spheroids to identify suppressors of anti-tumor immunity that directly act on interaction between CTL and tumor cells and to determine mechanisms of action. An adenosine 2A receptor antagonist, as enhanced by blockade of TIM3, slowed tumor growth in vivo. Engagement of the adenosine 2A receptor and TIM3 reduced tumor cell killing in spheroids, impaired CTL cytoskeletal polarization ex vivo and in vitro and inhibited CTL infiltration into tumors and spheroids. With this role in CTL killing, blocking A2AR and TIM3 may complement therapies that enhance T cell priming, e.g. anti-PD-1 and anti-CTLA-4.


Assuntos
Morte Celular , Citoesqueleto/fisiologia , Citosol/fisiologia , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor A2A de Adenosina/genética , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptor A2A de Adenosina/metabolismo
3.
Sci Signal ; 13(649)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934075

RESUMO

The killing of tumor cells by CD8+ T cells is suppressed by the tumor microenvironment, and increased expression of inhibitory receptors, including programmed cell death protein-1 (PD-1), is associated with tumor-mediated suppression of T cells. To find cellular defects triggered by tumor exposure and associated PD-1 signaling, we established an ex vivo imaging approach to investigate the response of antigen-specific, activated effector CD8+ tumor-infiltrating lymphocytes (TILs) after interaction with target tumor cells. Although TIL-tumor cell couples readily formed, couple stability deteriorated within minutes. This was associated with impaired F-actin clearing from the center of the cellular interface, reduced Ca2+ signaling, increased TIL locomotion, and impaired tumor cell killing. The interaction of CD8+ T lymphocytes with tumor cell spheroids in vitro induced a similar phenotype, supporting a critical role of direct T cell-tumor cell contact. Diminished engagement of PD-1 within the tumor, but not acute ex vivo blockade, partially restored cell couple maintenance and killing. PD-1 thus contributes to the suppression of TIL function by inducing a state of impaired subcellular organization.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Experimentais/imunologia , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia/métodos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Microscopia de Fluorescência/métodos , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/genética , Microambiente Tumoral/imunologia
4.
Methods Mol Biol ; 1584: 409-421, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28255716

RESUMO

Three-dimensional live cell imaging of the interaction of T cells with antigen-presenting cells (APCs) visualizes the subcellular distributions of signaling intermediates during T cell activation at thousands of resolved positions within a cell. These information-rich maps of local protein concentrations are a valuable resource in understanding T cell signaling. Here, we describe a protocol for the efficient acquisition of such imaging data and their computational processing to create four-dimensional maps of local concentrations. This protocol allows quantitative analysis of T cell signaling as it occurs inside live cells with resolution in time and space across thousands of cells.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Sinapses Imunológicas/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Sinapses Imunológicas/genética , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência/métodos
5.
Elife ; 62017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28112644

RESUMO

Notch is a critical regulator of T cell differentiation and is activated through proteolytic cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells, we demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally constrained mechanism. The protein kinase PKCθ is a critical mediator of signaling by the T cell antigen receptor and the principal costimulatory receptor CD28. PKCθ selectively inactivates the negative regulator of F-actin generation, Coronin 1A, at the center of the T cell interface with the antigen presenting cell (APC). This allows for effective generation of the large actin-based lamellum required for recruitment of the Notch-processing membrane metalloproteinase ADAM10. Such enhancement of Notch activation is critical for efficient T cell proliferation and Th17 differentiation. We reveal a novel mechanism that, through modulation of the cytoskeleton, controls Notch activation at the T cell:APC interface thereby linking T cell receptor and Notch signaling pathways.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteína Quinase C-theta/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Antígenos CD28/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
6.
Sci Signal ; 9(424): rs3, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27095595

RESUMO

Fluorescence microscopy is one of the most important tools in cell biology research because it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells. However, given extensive cell-to-cell variation, these data cannot be readily assembled into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. We have developed a method to enable comparison of imaging data from many cells and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28. We imaged actin and eight core actin regulators to generate over a thousand movies of T cells under conditions in which CD28 was either engaged or blocked in the context of a strong TCR signal. Our computational analysis showed that the primary effect of costimulation blockade was to decrease recruitment of the activator of actin nucleation WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) and the actin-severing protein cofilin to F-actin. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics caused by costimulation blockade. Thus, we have developed and validated an approach to quantify protein distributions in time and space for the analysis of complex regulatory systems.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Biologia Computacional/métodos , Linfócitos T/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Fatores de Despolimerização de Actina/genética , Animais , Western Blotting , Antígenos CD28/genética , Antígenos CD28/metabolismo , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sinapses Imunológicas/metabolismo , Cinética , Ativação Linfocitária , Camundongos Transgênicos , Microscopia de Fluorescência , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Imagem com Lapso de Tempo/métodos , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA