Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768976

RESUMO

Current agricultural practices are not sustainable; however, the non-thermal plasma treatment of seeds may be an eco-friendly alternative to alter macroscopic plant growth parameters. Despite numerous successful results of plasma-seed treatments reported in the literature, the plasma-treatment parameters required to improve plant growth remain elusive due to the plethora of physical, chemical, and biological variables. In this study, we investigate the optimal conditions in our surface dielectric barrier discharge (SDBD) setup, using a parametric study, and attempt to understand relevant species in the plasma treatment using in situ Fourier transform infrared (FTIR) absorption spectroscopy. Our results suggest that treatment time and voltage are key parameters for accelerated germination; however, no clear conclusion on causative agents can be drawn.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Gases em Plasma/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Equipamentos e Provisões Elétricas , Germinação/fisiologia , Gases em Plasma/administração & dosagem , Gases em Plasma/química , Espécies Reativas de Nitrogênio/administração & dosagem , Espécies Reativas de Oxigênio/administração & dosagem , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo
2.
Sci Rep ; 10(1): 3673, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111863

RESUMO

Fungal diseases seriously affect agricultural production and the food industry. Crop protection is usually achieved by synthetic fungicides, therefore more sustainable and innovative technologies are increasingly required. The atmospheric pressure low-temperature plasma is a novel suitable measure. We report on the effect of plasma treatment on phytopathogenic fungi causing quantitative and qualitative losses of products both in the field and postharvest. We focus our attention on the in vitro direct inhibitory effect of non-contact Surface Dielectric Barrier Discharge on conidia germination of Botrytis cinerea, Monilinia fructicola, Aspergillus carbonarius and Alternaria alternata. A few minutes of treatment was required to completely inactivate the fungi on an artificial medium. Morphological analysis of spores by Scanning Electron Microscopy suggests that the main mechanism is plasma etching due to Reactive Oxygen Species or UV radiation. Spectroscopic analysis of plasma generated in humid air gives the hint that the rotational temperature of gas should not play a relevant role being very close to room temperature. In vivo experiments on artificially inoculated cherry fruits demonstrated that inactivation of fungal spores by the direct inhibitory effect of plasma extend their shelf life. Pre-treatment of fruits before inoculation improve the resistance to infections maybe by activating defense responses in plant tissues.


Assuntos
Fungos Mitospóricos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Gases em Plasma , Esporos Fúngicos/crescimento & desenvolvimento , Gases em Plasma/química , Gases em Plasma/farmacologia
3.
Phys Chem Chem Phys ; 21(23): 12380-12388, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31140493

RESUMO

Nanoscale disassembly of mussel-inspired polydopamine (PDA) in ionic liquids (ILs) was recently shown to induce an electron paramagnetic resonance (EPR)-detectable reorganization of free radical centers in the resulting nanoparticles (NPs) in an IL-controlled manner. Herein, we report electrical impedance spectroscopy (EIS) data showing that PDA NPs produced by suspending samples obtained in Tris and bicarbonate buffer (PDA-T and PDA-C) in different ILs display different redox activity as a result of structural control combined with IL-surface interactions. In particular, susceptibility to oxidation was found to correlate closely with the spin density in an ion pair-tunable fashion in ILs. Structural control over free radical properties and redox behavior of PDA NPs in ILs opens novel perspectives for the rational design of functional nanovectors of possible interest for drug delivery and theranostic applications.

4.
Phys Chem Chem Phys ; 21(12): 6613-6621, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30855066

RESUMO

The present study involved an investigation on the reasoning behind the dependence of the perovskite solar cells photovoltaic efficiencies on the relative position of the undoped spiro-OMeTAD hole-transport material with respect to the perovskite in the device. We adopted impedance spectroscopy to investigate the modification of the carrier transport mechanisms across the spiro-OMeTAD/perovskite interface constituting the active part where the main device processes occur. We investigated two interface structures, referred to as the direct (or regular, n-i-p) and the inverted (p-i-n) configuration. This work also intended to further stress the possible adoption of alternative device structures working with undoped hole-transport materials.

5.
Phys Chem Chem Phys ; 19(14): 9432-9443, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28332659

RESUMO

Although it has long been known that the peculiar electronic-ionic conductor behavior of eumelanin is critically dependent on hydration, the detailed mechanisms by which water-polymer interactions control and affect the conduction properties have remained largely obscure. In this paper, we report a remarkable anisotropy and giant polarization effect in a synthetic eumelanin (TEGMe) chemically functionalized with hydrophilic TEG residues. FT-IR analyses of water sorption isotherms and AC measurements were consistent with a microporous structure binding or hosting mainly isolated water molecules. In contrast, similar experiments on a commercial synthetic eumelanin (AMe) used as a reference were suggestive of a bulk macroporous scaffold binding or hosting liquid water. These data disclosed for the first time the differential impact on eumelanin conductivity of vapor, liquid and ice-like forms of water adsorbed onto or embedded into the polymer layer. It is thus demonstrated, for the first time, that hydration controls the conduction properties of eumelanin in a more complex manner than is commonly believed, involving, besides the reported semiquinone comproportionation equilibria, the mode of interaction of water molecules as governed by both the chemical and morphological features of the polymer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA