Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358438

RESUMO

Promoting neural cell proliferation may represent an important strategy for enhancing brain repair after developmental brain injury. The present study aimed to assess the effects of melatonin on cell proliferation after an ischemic injury in the developing hippocampus, focusing on cell cycle dynamics. After in vivo neonatal hypoxia-ischemia (HI), hippocampal cell cycle dynamics were assessed by flow cytometry, together with histological evaluation of dentate gyrus cellularity and proliferation. Melatonin significantly increased the number of proliferating cells in the G2/M phase as well as the proliferating cell nuclear antigen (PCNA) and doublecortin (DCX) labeling reduced by HI. In vivo BrdU labeling revealed a higher BrdU-positivity in the dentate gyrus of ischemic rats treated with melatonin, an effect followed by increased cellularity and preserved hippocampal tissue integrity. These results indicate that the protective effect of melatonin after ischemic injury in neonatal rats may rely on the modulation of cell cycle dynamics of newborn hippocampal cells and increased cell proliferation.

2.
Heliyon ; 10(1): e23281, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205333

RESUMO

The lack of economic funds commonly represents a limiting factor in scientific research and prevents scientists from developing brilliant ideas. Indeed, a new project may involve using appropriate scientific instruments and concurrently dealing with the costs before pursuing new research fields. The innovative concept of investigating the effects of electric fields, as a simulation of marine electrical pollution, on benthic organisms such as foraminifera (marine protozoa) has been recently explored by our research group. This pioneering research has resulted in the development of a cost-effective instrument capable of generating customized electric stimulation patterns with accuracy and reliability. Here, we describe the construction of a low-intensity electrical stimulator based on an Arduino programmable board and a few electronic components. The instrument results very stable and precise regarding the stimulation times and the regulation of the current intensity applied to the biological preparation. Moreover, the setup can stimulate the preparation in constant or pulsed direct current. This homemade stimulation apparatus can be improved or modified according to the researchers' needs, as possibilities and fields of application can be innumerable.

3.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108630

RESUMO

The midbrain raphe serotonin (5HT) neurons provide the main ascending serotonergic projection to the forebrain, including hippocampus, which has a role in the pathophysiology of depressive disorder. Serotonin 5HT1A receptor (R) activation at the soma-dendritic level of serotonergic raphe neurons and glutamatergic hippocampal pyramidal neurons leads to a decrease in neuronal firing by activation of G protein-coupled inwardly-rectifying potassium (GIRK) channels. In this raphe-hippocampal serotonin neuron system, the existence of 5HT1AR-FGFR1 heteroreceptor complexes has been proven, but the functional receptor-receptor interactions in the heterocomplexes have only been investigated in CA1 pyramidal neurons of control Sprague Dawley (SD) rats. In the current study, considering the impact of the receptor interplay in developing new antidepressant drugs, the effects of 5HT1AR-FGFR1 complex activation were investigated in hippocampal pyramidal neurons and in midbrain dorsal raphe serotonergic neurons of SD rats and of a genetic rat model of depression (the Flinders Sensitive Line (FSL) rats of SD origin) using an electrophysiological approach. The results showed that in the raphe-hippocampal 5HT system of SD rats, 5HT1AR-FGFR1 heteroreceptor activation by specific agonists reduced the ability of the 5HT1AR protomer to open the GIRK channels through the allosteric inhibitory interplay produced by the activation of the FGFR1 protomer, leading to increased neuronal firing. On the contrary, in FSL rats, FGFR1 agonist-induced inhibitory allosteric action at the 5HT1AR protomer was not able to induce this effect on GIRK channels, except in CA2 neurons where we demonstrated that the functional receptor-receptor interaction is needed for producing the effect on GIRK. In keeping with this evidence, hippocampal plasticity, evaluated as long-term potentiation induction ability in the CA1 field, was impaired by 5HT1AR activation both in SD and in FSL rats, which did not develop after combined 5HT1AR-FGFR1 heterocomplex activation in SD rats. It is therefore proposed that in the genetic FSL model of depression, there is a significant reduction in the allosteric inhibition exerted by the FGFR1 protomer on the 5HT1A protomer-mediated opening of the GIRK channels in the 5HT1AR-FGFR1 heterocomplex located in the raphe-hippocampal serotonin system. This may result in an enhanced inhibition of the dorsal raphe 5HT nerve cell and glutamatergic hippocampal CA1 pyramidal nerve cell firing, which we propose may have a role in depression.


Assuntos
Núcleo Dorsal da Rafe , Serotonina , Animais , Ratos , Depressão/genética , Hipocampo , Ratos Sprague-Dawley , Neurônios Serotoninérgicos , Receptores de Serotonina/metabolismo
4.
Life (Basel) ; 13(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37109392

RESUMO

Environmental disturbances resulting from anthropogenic energy pollution are intensely growing and represent a concern for the marine environment. Benthic organisms are the significant fauna exposed to this kind of pollution; among them, foraminifera are largely used as pollution bioindicators in marine environments, but studies on the effects induced by electrical stimulation are not documented. In the present research, we evaluated the effects of short-term different electric current densities on the viability of benthic foraminiferal species Amphistegina lessonii by checking the pseudopodial activity and defined the threshold electrical density range. After 3 days of treatment, A. lessonii stimulated with a constant current showed pseudopodial activity at a lower electric current density (0.29, 0.86 µA/cm2) up to 24 h. With increasing stimulation time, the percentages of pseudopodial activity decreased. The pseudopodial activity was absent at high current densities (5.71, 8.57 µA/cm2). The viability of A. lessonii exposed to a pulsed current was higher at a low and middle electric current density (from 0.29 to 5.71 µA/cm2) than at a high electric current density (from 11.43 to 20 µA/cm2). Based on these preliminary results, the selected benthic foraminiferal species seems to better stand pulsed currents than constant ones. These first experiments might provide useful information for the definition of the appropriate electrical density threshold to avoid side effects on a part of the benthic community.

5.
Cells ; 11(22)2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36429130

RESUMO

Dysfunctional autophagy is linked to neuronal damage in ischemia/reperfusion injury. The Ras-related protein 7 (Rab7), a member of the Rab family of small GTPases, appears crucial for the progression of the autophagic flux, and its activity is strictly interconnected with the histone deacetylase Silent information regulator 1 (Sirt1) and transcription factor Forkhead box class O1 (FoxO1). The present study assessed the neuroprotective role of melatonin in the modulation of the Sirt1/FoxO1/Rab7 axis in HT22 cells and organotypic hippocampal cultures exposed to oxygen-glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin re-established physiological levels of autophagy and reduced propidium iodide-positive cells, speeding up autophagosome (AP) maturation and increasing lysosomal activity. Our study revealed that melatonin modulates autophagic pathways, increasing the expression of both Rab7 and FoxO1 and restoring the Sirt1 expression affected by OGD/R. In addition, the Sirt1 inhibitor EX-527 significantly reduced Rab7, Sirt1, and FoxO1 expression, as well as autolysosomes formation, and blocked the neuroprotective effect of melatonin. Overall, our findings provide, for the first time, new insights into the neuroprotective role of melatonin against ischemic injury through the activation of the Sirt1/FoxO1/Rab7 axis.


Assuntos
Melatonina , Humanos , Melatonina/farmacologia , Sirtuína 1/metabolismo , Autofagossomos/metabolismo , Isquemia , Hipocampo/metabolismo , Proteína Forkhead Box O1/metabolismo
6.
Front Physiol ; 13: 948985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148308

RESUMO

Background: Incomplete functional recovery following traumatic peripheral nerve injury is common, mainly because not all axons successfully regenerate and reinnervate target muscles. Exercise can improve functional outcomes increasing the terminal sprouting during the muscle reinnervation. However, exercise is not a panacea per se. Indeed, the type of exercise adopted dramatically impacts the outcomes of rehabilitation therapy. To gain insight into the therapeutic effects of different exercise regimens on reinnervation following traumatic nerve lesion, we evaluated the impact of different clinically transferable exercise protocols (EPs) on metabolic and functional muscle recovery following nerve crush. Methods: The reinnervation of soleus muscle in adult nerve-crushed rats was studied following 6 days of different patterns (continuous or intermittent) and intensities (slow, mid, and fast) of treadmill running EPs. The effects of EPs on muscle fiber multiple innervation, contractile properties, metabolic adaptations, atrophy, and autophagy were assessed using functional and biochemical approaches. Results: Results showed that an intermittent mid-intensity treadmill EP improves soleus muscle reinnervation, whereas a slow continuous running EP worsens the functional outcome. However, the mid-intensity intermittent EP neither enhanced the critical mediators of exercise-induced metabolic adaptations, namely, PGC-1α, nor improved muscle atrophy. Conversely, the autophagy-related marker LC3 increased exclusively in the mid-intensity intermittent EP group. Conclusion: Our results demonstrated that an EP characterized by a mid-intensity intermittent activity enhances the functional muscle recovery upon a nerve crush, thus representing a promising clinically transferable exercise paradigm to improve recovery in humans following peripheral nerve injuries.

7.
PLoS One ; 17(7): e0271748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895706

RESUMO

In this study, we adapted a race-Implicit Association Test (race-IAT) to mouse-tracking (MT) technique to identify the more representative target observed MT-metrics and explore the temporal unfolding of the cognitive conflict emerging during the categorisation task. Participants of Western European descent performed a standard keyboard-response race-IAT (RT-race-IAT) and an MT-race-IAT with the same structure. From a behavioural point of view, our sample showed a typical Congruency Effect, thus a pro-White implicit bias, in the RT-race-IAT. In addition, in the MT-race-IAT, the MT-metrics showed a similar Congruency Effect mirroring the higher attraction of the averaged-trajectories towards the incorrect response button in incongruent than congruent trials. Moreover, these MT-metrics were positively associated with RT-race-IAT scores, strengthening the MT approach's validity in characterising the implicit bias. Furthermore, the distributional analyses showed that mouse trajectories displayed a smooth profile both in congruent and incongruent trials to indicate that the unfolding of the decision process and the raised conflict is guided by dynamical cognitive processing. This latter continuous competition process was studied using a novel phase-based approach which allowed to temporally dissect an Early, a Mid and a Late phase, each of which may differently reflect the decision conflict between automatic and controlled responses in the evolution of the mouse movement towards the target response. Our results show that the MT approach provides an accurate and finer-grained characterisation of the implicit racial attitude than classical RT-IAT. Finally, our novel phase-based approach can be an effective tool to shed light on the implicit conflict processing emerging in a categorisation task with a promising transferable value in different cognitive and neuropsychological fields.


Assuntos
Benchmarking , População Branca , Atitude , Humanos
8.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743307

RESUMO

Physical exercise is a well-proven neurogenic stimulus, promoting neuronal progenitor proliferation and affecting newborn cell survival. Besides, it has beneficial effects on brain health and cognition. Previously, we found that three days of physical activity in a very precocious period of adult-generated granule cell life is able to antedate the appearance of the first GABAergic synaptic contacts and increase T-type Ca2+ channel expression. Considering the role of GABA and Ca2+ in fostering neuronal maturation, in this study, we used short-term, voluntary exercise on a running wheel to investigate if it is able to induce long-term morphological and synaptic changes in newborn neurons. Using adult male rats, we found that: (i) three days of voluntary physical exercise can definitively influence the morpho-functional maturation process of newborn granule neurons when applied very early during their development; (ii) a significant percentage of new neurons show more mature morphological characteristics far from the end of exercise protocol; (iii) the long-term morphological effects result in enhanced synaptic plasticity. Present findings demonstrate that the morpho-functional changes induced by exercise on very immature adult-generated neurons are permanent, affecting the neuron maturation and integration in hippocampal circuitry. Our data contribute to underpinning the beneficial potential of physical activity on brain health, also performed for short times.


Assuntos
Giro Denteado , Condicionamento Físico Animal , Animais , Giro Denteado/metabolismo , Hipocampo/metabolismo , Masculino , Neurogênese/fisiologia , Neurônios/metabolismo , Condicionamento Físico Animal/fisiologia , Ratos
9.
Biomolecules ; 12(5)2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35625628

RESUMO

The first step to obtain a cellular suspension from tissues is the disaggregation procedure. The cell suspension method has to provide a representative sample of the different cellular subpopulations and to maximize the number of viable functional cells. Here, we analyzed specific cell functions in cell suspensions from several rat tissues obtained by two different methods, automated-mechanical and enzymatic disaggregation. Flow cytometric, confocal, and ultrastructural (TEM) analyses were applied to the spleen, testis, liver and other tissues. Samples were treated by an enzymatic trypsin solution or processed by the Medimachine II (MMII). The automated-mechanical and enzymatic disaggregation procedures have shown to work similarly in some tissues, which displayed comparable amounts of apoptotic/necrotic cells. However, cells obtained by the enzyme-free Medimachine II protocols show a better preservation lysosome and mitochondria labeling, whereas the enzymatic gentle dissociation appears to constantly induce a lower amount of intracellular ROS; nevertheless, lightly increased ROS can be recognized as a complimentary signal to promote cell survival. Therefore, MMII represents a simple, fast, and standardized method for tissue processing, which allows to minimize bias arising from the operator's ability. Our study points out technical issues to be adopted for specific organs and tissues to obtain functional cells.


Assuntos
Testículo , Animais , Contagem de Células , Sobrevivência Celular , Citometria de Fluxo/métodos , Masculino , Ratos , Espécies Reativas de Oxigênio
10.
Cells ; 10(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34440670

RESUMO

The heteroreceptor complexes present a novel biological principle for signal integration. These complexes and their allosteric receptor-receptor interactions are bidirectional and novel targets for treatment of CNS diseases including mental diseases. The existence of D2R-5-HT2AR heterocomplexes can help explain the anti-schizophrenic effects of atypical antipsychotic drugs not only based on blockade of 5-HT2AR and of D2R in higher doses but also based on blocking the allosteric enhancement of D2R protomer signaling by 5-HT2AR protomer activation. This research opens a new understanding of the integration of DA and 5-HT signals released from DA and 5-HT nerve terminal networks. The biological principle of forming 5-HT and other heteroreceptor complexes in the brain also help understand the mechanism of action for especially the 5-HT hallucinogens, including putative positive effects of e.g., psilocybin and the indicated prosocial and anti-stress actions of MDMA (ecstasy). The GalR1-GalR2 heterodimer and the putative GalR1-GalR2-5-HT1 heteroreceptor complexes are targets for Galanin N-terminal fragment Gal (1-15), a major modulator of emotional networks in models of mental disease. GPCR-receptor tyrosine kinase (RTK) heteroreceptor complexes can operate through transactivation of FGFR1 via allosteric mechanisms and indirect interactions over GPCR intracellular pathways involving protein kinase Src which produces tyrosine phosphorylation of the RTK. The exciting discovery was made that several antidepressant drugs such as TCAs and SSRIs as well as the fast-acting antidepressant drug ketamine can directly bind to the TrkB receptor and provide a novel mechanism for their antidepressant actions. Understanding the role of astrocytes and their allosteric receptor-receptor interactions in modulating forebrain glutamate synapses with impact on dorsal raphe-forebrain serotonin neurons is also of high relevance for research on major depressive disorder.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transtornos Mentais/metabolismo , Receptor Cross-Talk , Receptor 5-HT2A de Serotonina/metabolismo , Receptores 5-HT1 de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Animais , Antidepressivos/uso terapêutico , Antipsicóticos/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/fisiopatologia , Transtornos Mentais/psicologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Receptor 5-HT2A de Serotonina/genética , Receptores de Dopamina D2/metabolismo , Receptores 5-HT1 de Serotonina/genética , Transdução de Sinais
11.
J Pineal Res ; 71(1): e12747, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34085316

RESUMO

Mitochondrial dysfunction is considered one of the hallmarks of ischemia/reperfusion injury. Mitochondria are plastic organelles that undergo continuous biogenesis, fusion, and fission. They can be transferred between cells through tunneling nanotubes (TNTs), dynamic structures that allow the exchange of proteins, soluble molecules, and organelles. Maintaining mitochondrial dynamics is crucial to cell function and survival. The present study aimed to assess the effects of melatonin on mitochondrial dynamics, TNT formation, and mitochondria transfer in HT22 cells exposed to oxygen/glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin treatment during the reoxygenation phase reduced mitochondrial reactive oxygen species (ROS) production, improved cell viability, and increased the expression of PGC1α and SIRT3. Melatonin also preserved the expression of the membrane translocase proteins TOM20 and TIM23, and of the matrix protein HSP60, which are involved in mitochondrial biogenesis. Moreover, it promoted mitochondrial fusion and enhanced the expression of MFN2 and OPA1. Remarkably, melatonin also fostered mitochondrial transfer between injured HT22 cells through TNT connections. These results provide new insights into the effect of melatonin on mitochondrial network reshaping and cell survival. Fostering TNTs formation represents a novel mechanism mediating the protective effect of melatonin in ischemia/reperfusion injury.


Assuntos
Isquemia Encefálica/patologia , Estruturas da Membrana Celular/efeitos dos fármacos , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Neurônios/ultraestrutura , Animais , Linhagem Celular , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/ultraestrutura , Camundongos , Mitocôndrias/metabolismo , Nanotubos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Traumatismo por Reperfusão/patologia
12.
Biol Chem ; 402(10): 1225-1237, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34090314

RESUMO

The fluorescent probes represent an important tool in the biological study, in fact characterization of cellular structures and organelles are an important tool-target for understanding the mechanisms regulating most biological processes. Recently, a series of polyamino-macrocycles based on 1,4,7,10-tetraazacyclododecane was synthesized, bearing one or two NBD units (AJ2NBD·4HCl) useful as sensors for metal cations and halides able to target and to detect apolar environment, as lipid membranes. In this paper, we firstly illustrate the chemical synthesis of the AJ2NBD probe, its electronic absorption spectra and its behavior regarding pH of the environment. Lack of any cellular toxicity and an efficient labelling on fresh, living cells was demonstrated, allowing the use of AJ2NBD in biological studies. In particular, this green fluorescent probe may represent a potential dye for the compartments involved in the endosomal/autophagic pathway. This research's field should benefit from the use of AJ2NBD as a vesicular tracer, however, to ensure the precise nature of vesicles/vacuoles traced by this new probe, other more specific tests are needed.


Assuntos
Corantes Fluorescentes , Lisossomos , Autofagia , Endossomos
13.
Int J Mol Sci ; 22(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672070

RESUMO

Serotonin communication operates mainly in the extracellular space and cerebrospinal fluid (CSF), using volume transmission with serotonin moving from source to target cells (neurons and astroglia) via energy gradients, leading to the diffusion and convection (flow) of serotonin. One emerging concept in depression is that disturbances in the integrative allosteric receptor-receptor interactions in highly vulnerable 5-HT1A heteroreceptor complexes can contribute to causing major depression and become novel targets for the treatment of major depression (MD) and anxiety. For instance, a disruption and/or dysfunction in the 5-HT1A-FGFR1 heteroreceptor complexes in the raphe-hippocampal serotonin neuron systems can contribute to the development of MD. It leads inter alia to reduced neuroplasticity and potential atrophy in the raphe-cortical and raphe-striatal 5-HT pathways and in all its forebrain networks. Reduced 5-HT1A auto-receptor function, increased plasticity and trophic activity in the midbrain raphe 5-HT neurons can develop via agonist activation of allosteric receptor-receptor interactions in the 5-HT1A-FGFR1 heterocomplex. Additionally, the inhibitory allosteric receptor-receptor interactions in the 5-HT1AR-5-HT2AR isoreceptor complex therefore likely have a significant role in modulating mood, involving a reduction of postjunctional 5-HT1AR protomer signaling in the forebrain upon activation of the 5-HT2AR protomer. In addition, oxytocin receptors (OXTRs) play a significant and impressive role in modulating social and cognitive related behaviors like bonding and attachment, reward and motivation. Pathological blunting of the OXTR protomers in 5-HT2AR and especially in 5-HT2CR heteroreceptor complexes can contribute to the development of depression and other types of psychiatric diseases involving disturbances in social behaviors. The 5-HTR heterocomplexes are novel targets for the treatment of MD.


Assuntos
Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Animais , Humanos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Receptores de Ocitocina/metabolismo
14.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165922, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800945

RESUMO

Excessive production of immunoglobulins (Ig) causes endoplasmic reticulum (ER) stress and triggers the unfolded protein response (UPR). Hypergammaglobulinemia and lymphadenopathy are hallmarks of murine AIDS that develops in mice infected with the LP-BM5 murine leukemia retrovirus complex. In these mice, Th2 polarization and aberrant humoral response have been previously correlated to altered intracellular redox homeostasis. Our goal was to understand the role of the cell's redox state in Ig secretion and plasma cell (PC) maturation. To this aim, LP-BM5-infected mice were treated with I-152, an N-acetyl-cysteine and cysteamine supplier. Intraperitoneal I-152 administration (30 µmol/mouse three times a week for 9 weeks) decreased plasma IgG and increased IgG/Syndecan 1 ratio in the lymph nodes where IgG were in part accumulated within the ER. PC containing cytoplasmic inclusions filled with IgG were present in all animals, with fewer mature PC in those treated with I-152. Infection induced up-regulation of signaling molecules involved in the UPR, i.e. CHAC1, BiP, sXBP-1 and PDI, that were generally unaffected by I-152 treatment except for PDI and sXBP-1, which have a key role in protein folding and PC maturation, respectively. Our data suggest that one of the mechanisms through which I-152 can limit hypergammaglobulinemia in LP-BM5-infected mice is by influencing IgG folding/assembly as well as secretion and affecting PC maturation.


Assuntos
Acetilcisteína/análogos & derivados , Antivirais/farmacologia , Cisteamina/análogos & derivados , Imunoglobulinas/metabolismo , Plasmócitos/efeitos dos fármacos , Infecções por Retroviridae/tratamento farmacológico , Infecções Tumorais por Vírus/tratamento farmacológico , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Acetilcisteína/administração & dosagem , Acetilcisteína/farmacologia , Animais , Antivirais/administração & dosagem , Cisteamina/administração & dosagem , Cisteamina/farmacologia , Modelos Animais de Doenças , Feminino , Imunoglobulinas/sangue , Injeções Intraperitoneais , Leucemia Experimental/tratamento farmacológico , Leucemia Experimental/metabolismo , Leucemia Experimental/virologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmócitos/metabolismo , Plasmócitos/virologia , Desdobramento de Proteína/efeitos dos fármacos , Infecções por Retroviridae/metabolismo , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/metabolismo , Infecções Tumorais por Vírus/virologia
15.
Int J Mol Sci ; 21(15)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751833

RESUMO

: Experimental evidence highlights the involvement of the endoplasmic reticulum (ER)-mediated Ca2+ signals in modulating synaptic plasticity and spatial memory formation in the hippocampus. Ca2+ release from the ER mainly occurs through two classes of Ca2+ channels, inositol 1,4,5-trisphosphate receptors (InsP3Rs) and ryanodine receptors (RyRs). Calsequestrin (CASQ) and calreticulin (CR) are the most abundant Ca2+-binding proteins allowing ER Ca2+ storage. The hippocampus is one of the brain regions expressing CASQ, but its role in neuronal activity, plasticity, and the learning processes is poorly investigated. Here, we used knockout mice lacking both CASQ type-1 and type-2 isoforms (double (d)CASQ-null mice) to: a) evaluate in adulthood the neuronal electrophysiological properties and synaptic plasticity in the hippocampal Cornu Ammonis 1 (CA1) field and b) study the performance of knockout mice in spatial learning tasks. The ablation of CASQ increased the CA1 neuron excitability and improved the long-term potentiation (LTP) maintenance. Consistently, (d)CASQ-null mice performed significantly better than controls in the Morris Water Maze task, needing a shorter time to develop a spatial preference for the goal. The Ca2+ handling analysis in CA1 pyramidal cells showed a decrement of Ca2+ transient amplitude in (d)CASQ-null mouse neurons, which is consistent with a decrease in afterhyperpolarization improving LTP. Altogether, our findings suggest that CASQ deletion affects activity-dependent ER Ca2+ release, thus facilitating synaptic plasticity and spatial learning in post-natal development.


Assuntos
Região CA1 Hipocampal/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Calsequestrina/fisiologia , Plasticidade Neuronal , Aprendizagem Espacial , Animais , Região CA1 Hipocampal/citologia , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Calsequestrina/genética , Retículo Endoplasmático/metabolismo , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Piramidais/citologia , Células Piramidais/metabolismo
16.
Mech Ageing Dev ; 190: 111289, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32565059

RESUMO

Adenosine A2A receptors (A2AR) are crucial in facilitating the BDNF action on synaptic transmission in the rat hippocampus primarily upon ageing. Furthermore, it has been suggested that A2AR-Tropomyosin related kinase B receptor (TrkB) crosstalk has a pivotal role in adenosine A2AR-mediated modulation of the BDNF action on hippocampal plasticity. Considering the impact of the above receptors interplay on what concerns BDNF-induced enhancement of synaptic transmission, gaining a better insight into the mechanisms behind this powerful crosstalk becomes of primary interest. Using in situ proximity ligation assay (PLA), the existence of a direct physical interaction between adenosine A2AR and TrkB is demonstrated. The A2AR-TrkB heteroreceptor complexes show a heterogeneous distribution within the rat dorsal hippocampus. High densities of the heteroreceptor complexes were observed in the pyramidal cell layers of CA1-CA3 regions and in the polymorphic layer of the dentate gyrus (DG). The stratum radiatum of the CA1-3 regions showed positive PLA signal in contrast to the oriens region. The molecular and granular layers of the DG also lacked significant densities of PLA positive heteroreceptor complexes, but subgranular zone showed some PLA positive cells. Their allosteric receptor-receptor interactions may significantly modulate BDNF signaling impacting on hippocampal plasticity which is impaired upon ageing.


Assuntos
Envelhecimento/fisiologia , Hipocampo , Plasticidade Neuronal/fisiologia , Receptor A2A de Adenosina/metabolismo , Receptor trkB/metabolismo , Transmissão Sináptica/fisiologia , Animais , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Membrana Celular/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Complexos Multiproteicos , Ratos , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
17.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138257

RESUMO

In the dentate gyrus (DG) of the mammalian hippocampus, granule neurons are generated from neural stem cells (NSCs) throughout the life span and are integrated into the hippocampal network. Adult DG neurogenesis is regulated by multiple intrinsic and extrinsic factors that control NSC proliferation, maintenance, and differentiation into mature neurons. γ-Aminobutyric acid (GABA), released by local interneurons, regulates the development of neurons born in adulthood by activating extrasynaptic and synaptic GABAA receptors. In the present work, patch-clamp and calcium imaging techniques were used to record very immature granule cells of adult rat dentate gyrus for investigating the actual role of GABAA receptor activation in intracellular calcium level regulation at an early stage of maturation. Our findings highlight a novel molecular and electrophysiological mechanism, involving calcium-activated potassium channels (BK) and T-type voltage-dependent calcium channels, through which GABA fine-tunes intracellular calcium homeostasis in rat adult-born granule neurons early during their maturation. This mechanism might be instrumental in promoting newborn cell survival.


Assuntos
Hipocampo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Giro Denteado/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de GABA/metabolismo
18.
Sci Rep ; 9(1): 19441, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857637

RESUMO

The adverse effects of engineered nanomaterials (ENM) in marine environments have recently attracted great attention although their effects on marine benthic organisms such as foraminifera are still largely overlooked. Here we document the effects of three negatively charged ENM, different in size and composition, titanium dioxide (TiO2), polystyrene (PS) and silicon dioxide (SiO2), on a microbial eukaryote (the benthic foraminifera Ammonia parkinsoniana) using multiple approaches. This research clearly shows the presence, within the foraminiferal cytoplasm, of metallic (Ti) and organic (PS) ENM that promote physiological stress. Specifically, marked increases in the accumulation of neutral lipids and enhanced reactive oxygen species production occurred in ENM-treated specimens regardless of ENM type. This study indicates that ENM represent ecotoxicological risks for this microbial eukaryote and presents a new model for the neglected marine benthos by which to assess natural exposure scenarios.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Foraminíferos/efeitos dos fármacos , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/fisiologia , Monitoramento Ambiental , Foraminíferos/fisiologia , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Poliestirenos/toxicidade , Água do Mar/química , Água do Mar/microbiologia , Dióxido de Silício/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Titânio/toxicidade
19.
Nutrients ; 11(9)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461895

RESUMO

Creatine plays a crucial role in developing the brain, so much that its genetic deficiency results in mental dysfunction and cognitive impairments. Moreover, creatine supplementation is currently under investigation as a preventive measure to protect the fetus against oxidative stress during difficult pregnancies. Although creatine use is considered safe, posing minimal risk to clinical health, we found an alteration in morpho-functional maturation of neurons when male rats were exposed to creatine loads during brain development. In particular, increased excitability and enhanced long-term potentiation (LTP) were observed in the hippocampal pyramidal neurons of weaning pups. Since these effects were observed a long time after creatine treatment had been terminated, long-lasting modifications persisting into adulthood were hypothesized. Such modifications were investigated in the present study using morphological, electrophysiological, and calcium imaging techniques applied to hippocampal Cornu Ammonis 1 (CA1) neurons of adult rats born from dams supplemented with creatine. When compared to age-matched controls, the treated adult offspring were found to retain enhanced neuron excitability and an improved LTP, the best-documented neuronal substrate for memory formation. While translating data from rats to humans does have limitations, our findings suggest that prenatal creatine supplementation could have positive effects on adult cognitive abilities.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Creatina/administração & dosagem , Suplementos Nutricionais , Plasticidade Neuronal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Células Piramidais/efeitos dos fármacos , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Comportamento Animal/efeitos dos fármacos , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cognição/efeitos dos fármacos , Feminino , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Memória/efeitos dos fármacos , Gravidez , Células Piramidais/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo
20.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1098-1112, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30703511

RESUMO

Glutamate-mediated excitotoxicity, neuroinflammation, and oxidative stress are common underlying events in neurodegeneration. This pathogenic "triad" characterizes the neurobiology of epilepsy, leading to seizure-induced cell death, increased susceptibility to neuronal synchronization and network alterations. Along with other maladaptive changes, these events pave the way to spontaneous recurrent seizures and progressive degeneration of the interested brain areas. In vivo models of epilepsy are available to explore such epileptogenic mechanisms, also assessing the efficacy of chemoprevention and therapy strategies at the pre-clinical level. The kainic acid model of pharmacological excitotoxicity and epileptogenesis is one of the most investigated mimicking the chronicization profile of temporal lobe epilepsy in humans. Its pathogenic cues include inflammatory and neuronal death pathway activation, mitochondrial disturbances and lipid peroxidation of several regions of the brain, the most vulnerable being the hippocampus. The importance of neuroinflammation and lipid peroxidation as underlying molecular events of brain damage was demonstrated in this model by the possibility to counteract the related maladaptive morphological and functional changes of this organ with vitamin E, the main fat-soluble cellular antioxidant and "conditional" co-factor of enzymatic pathways involved in polyunsaturated lipid metabolism and inflammatory signaling. The present review paper provides an overview of the literature supporting the potential for a timely intervention with vitamin E therapy in clinical management of seizures and epileptogenic processes associated with excitotoxicity, neuroinflammation and lipid peroxidation, i.e. the pathogenic "triad".


Assuntos
Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Inflamação/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ácido Caínico/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Vitamina E/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA