Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Environ Microbiol ; 20(4): 1498-1515, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411480

RESUMO

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease in Canada. The worldwide genetic structure of Pst populations have been characterized, excluding Canada. Here, we elucidated the genetic structure of the western Canadian Pst population using molecular markers, revealing the presence of four divergent lineages with predominantly clonal structure. In the worldwide context, two previously reported lineages were identified: PstS0 (22%), representing an old Northwestern-European and PstS1 (35%), an invasive warm-temperature adapted. Additionally, two new, unreported lineages, PstPr (9%) and PstS1-related (35%), were detected, which produced more telia than other lineages and had double the number of unique recombination events. The PstPr was a recent invasion, and likely evolved in a diverse, recombinant population as it was closely related to the PstS5, PstS7/Warrior, PstS8/Kranich, and PstS9 lineages originating from sexually recombining populations in the centre of diversity. The DNA methylation analysis revealed DNA-methyltransferase1-homologs, providing compelling evidence for epigenetic regulation and as a first report, an average of ∼5%, 5hmC in the Puccinia epigenome merits further investigation. The divergent lineages in the Canadian Pst population with the potential for genetic recombination, as well as epigenetic regulation needs consideration in the context of pathogen adaptation and management.


Assuntos
Basidiomycota/classificação , Basidiomycota/genética , Metilação de DNA/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Canadá , Mapeamento Cromossômico , Epigênese Genética , Marcadores Genéticos/genética , Repetições de Microssatélites/genética
3.
J Photochem Photobiol B ; 176: 81-91, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28964889

RESUMO

5-aminolevulinic acid mediated PDT (5-ALA-PDT) is an approved therapeutic procedure for treating carcinomas of the cervix. However, when employed as a monotherapy, 5-ALA-PDT could not produce satisfactory results toward large and deep tumors. Therefore, developing a method to improve the efficacy of 5-ALA-PDT becomes important. In this study, we demonstrate an enhanced antitumor effect of 5-ALA-PDT by the modulation of mitochondrial morphology. The mitochondria in the cells were regulated into tubular mitochondria or fragmented mitochondria through over expression of Drp1 or Mfn2. Then these cells were treated with identical dose of 5-ALA-PDT. Our results suggest that HeLa cells predominantly containing fragmented mitochondria were more sensitive to 5-ALA-PDT than the cells predominantly containing tubular mitochondria. The morphology of mitochondria changed as the cell cycle progressed, with tubular mitochondria predominantly exhibited in the S phase and uniformly fragmented mitochondria predominantly displayed in the M phase. Paclitaxel significantly increased the population of M-phase cells, while 5-fluorouracil significantly increased the population of S-phase cells in xenograft tumors. Furthermore, low-dose paclitaxel significantly increased the antitumor effects of PDT. However, 5-fluorouracil didn't improve the antitumor effects of PDT. These results demonstrated an enhanced antitumor effect of 5-ALA-PDT from the modulation of mitochondrial morphology. We anticipate that our results will provide an insight for selecting potential chemotherapeutic agents to combine with PDT for tumor treatment.


Assuntos
Ácido Aminolevulínico/toxicidade , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Mitocôndrias/química , Fármacos Fotossensibilizantes/toxicidade , Ácido Aminolevulínico/química , Ácido Aminolevulínico/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Dinaminas , Fluoruracila/uso terapêutico , Fluoruracila/toxicidade , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Imuno-Histoquímica , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Neoplasias/patologia , Paclitaxel/uso terapêutico , Paclitaxel/toxicidade , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Plasmídeos/genética , Plasmídeos/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Taxa de Sobrevida , Transplante Heterólogo
4.
Angew Chem Int Ed Engl ; 56(46): 14463-14468, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28884954

RESUMO

Mass spectrometry (MS) applications for intact protein complexes typically require electrospray (ES) ionization and have not been achieved via direct desorption from surfaces. Desorption ES ionization (DESI) MS has however transformed the study of tissue surfaces through release and characterisation of small molecules. Motivated by the desire to screen for ligand binding to intact protein complexes we report the development of a native DESI platform. By establishing conditions that preserve non-covalent interactions we exploit the surface to capture a rapid turnover enzyme-substrate complex and to optimise detergents for membrane protein study. We demonstrate binding of lipids and drugs to membrane proteins deposited on surfaces and selectivity from a mix of related agonists for specific binding to a GPCR. Overall therefore we introduce this native DESI platform with the potential for high-throughput ligand screening of some of the most challenging drug targets including GPCRs.


Assuntos
Proteínas de Membrana/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Ligantes , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Peso Molecular , Preparações Farmacêuticas/metabolismo , Ligação Proteica , Solubilidade , Propriedades de Superfície
5.
Structure ; 25(5): 773-782.e5, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28434916

RESUMO

Select lectins have powerful anti-viral properties that effectively neutralize HIV-1 by targeting the dense glycan shield on the virus. Here, we reveal the mechanism by which one of the most potent lectins, BanLec, achieves its inhibition. We identify that BanLec recognizes a subset of high-mannose glycans via bidentate interactions spanning the two binding sites present on each BanLec monomer that were previously considered separate carbohydrate recognition domains. We show that both sites are required for high-affinity glycan binding and virus neutralization. Unexpectedly we find that BanLec adopts a tetrameric stoichiometry in solution whereby the glycan-binding sites are positioned to optimally target glycosylated viral spikes. The tetrameric architecture, together with bidentate binding to individual glycans, leads to layers of multivalency that drive viral neutralization through enhanced avidity effects. These structural insights will prove useful in engineering successful lectin therapeutics targeting the dense glycan shield of HIV.


Assuntos
Antivirais/química , Lectinas de Plantas/química , Polissacarídeos/metabolismo , Antivirais/farmacologia , Sítios de Ligação , HIV-1/química , HIV-1/efeitos dos fármacos , Musa/química , Lectinas de Plantas/metabolismo , Lectinas de Plantas/farmacologia , Polissacarídeos/química , Ligação Proteica , Multimerização Proteica
6.
Inorg Chem ; 56(5): 2812-2826, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28191846

RESUMO

The overproduction of reactive oxygen species has been linked to a wide array of health disorders. The ability to noninvasively monitor oxidative stress in vivo could provide substantial insight into the progression of these conditions and, in turn, could facilitate the development of better diagnosis and treatment options. A mononuclear Mn(II) complex with the redox-active ligand N,N'-bis(2,5-dihydroxybenzyl)-N,N'-bis(2-pyridinylmethyl)-1,2-ethanediamine (H4qtp2) was made and characterized. A previously prepared Mn(II) complex with a ligand containing a single quinol subunit was found to display a modest T1-derived relaxivity response to H2O2. The introduction of a second redox-active quinol both substantially improves the relaxivity response of the complex to H2O2 and reduces the cytotoxicity of the sensor but renders the complex more susceptible to transmetalation. The addition of H2O2 partially oxidizes the quinol subunits to para-quinones, concomitantly increasing the r1 from 5.46 mM-1 s-1 to 7.17 mM-1 s-1. The oxidation of the ligand enables more water molecules to coordinate to the metal ion, providing an explanation for the enhanced relaxivity. That the diquinol complex is only partially oxidized by H2O2 is attributed to its activity as an antioxidant; the complex can both catalytically degrade superoxide and serve as a hydrogen atom donor.


Assuntos
Antioxidantes/farmacologia , Meios de Contraste/química , Peróxido de Hidrogênio/química , Hidroquinonas/química , Manganês/farmacologia , Compostos Organometálicos/farmacologia , Animais , Antioxidantes/síntese química , Antioxidantes/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Imageamento por Ressonância Magnética , Manganês/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Oxirredução , Ratos
8.
Artigo em Inglês | MEDLINE | ID: mdl-25553535

RESUMO

Acyl coenzyme A (acyl-CoA) thioesters are important intermediates in cellular metabolism and being able to distinguish among them is critical to fully understanding metabolic pathways in plants. Although significant advances have been made in the identification and quantification of acyl-CoAs using liquid chromatography tandem mass spectrometry (LC-MS/MS), separation of isomeric species such as isobutyryl- and n-butyrl-CoA has remained elusive. Here we report an ultra-performance liquid chromatography (UPLC)-MS/MS method for quantifying short-chain acyl-CoAs including isomeric species n-butyryl-CoA and isobutyryl-CoA as well as n-valeryl-CoA and isovaleryl-CoA. The method was applied to the analysis of extracts of hop (Humulus lupulus) and provided strong evidence for the existence of an additional structural isomer of valeryl-CoA, 2-methylbutyryl-CoA, as well as an unexpected isomer of hexanoyl-CoA. The results showed differences in the acyl-CoA composition among varieties of Humulus lupulus, both in glandular trichomes and cone tissues. When compared with the analysis of hemp (Cannabis sativa) extracts, the contribution of isobutyryl-CoAs in hop was greater as would be expected based on the downstream polyketide products. Surprisingly, branched chain valeryl-CoAs (isovaleryl-CoA and 2-methylbutyryl-CoA) were the dominant form of valeryl-CoAs in both hop and hemp. The capability to separate these isomeric forms will help to understand biochemical pathways leading to specialized metabolites in plants.


Assuntos
Acil Coenzima A/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos
9.
J Am Chem Soc ; 136(37): 12836-9, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25187295

RESUMO

A manganese(II) complex with a ligand containing an oxidizable quinol group serves as a turn-on sensor for H2O2. Upon oxidation, the relaxivity of the complex in buffered water increases by 0.8 mM(-1) s(-1), providing a signal that can be detected and quantified by magnetic resonance imaging. The complex also serves as a potent antioxidant, suggesting that this and related complexes have the potential to concurrently visualize and alleviate oxidative stress.


Assuntos
Antioxidantes/química , Meios de Contraste/química , Complexos de Coordenação/química , Peróxido de Hidrogênio/análise , Manganês/química , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Linhagem Celular , Meios de Contraste/farmacologia , Complexos de Coordenação/farmacologia , Imageamento por Ressonância Magnética , Manganês/farmacologia , Camundongos , Modelos Moleculares , Oxirredução , Ratos
10.
Artigo em Inglês | MEDLINE | ID: mdl-25173496

RESUMO

A systematic set of optimization experiments was conducted to design an efficient extraction and analysis protocol for screening six different sub-classes of phenolic compounds in the seed coat of various lentil (Lens culinaris Medik.) genotypes. Different compounds from anthocyanidins, flavan-3-ols, proanthocyanidins, flavanones, flavones, and flavonols sub-classes were first optimized for use as standards for liquid chromatography mass spectrometry (LC-MS) with UV detection. The effect of maceration duration, reconstitution solvent, and extraction solvent were investigated using lentil genotype CDC Maxim. Chromatographic conditions were optimized by examining column separation efficiencies, organic composition, and solvent gradient. The results showed that a 1h maceration step was sufficient and that non-acidified solvents were more appropriate; a 70:30 acetone: water (v/v) solvent was ultimately selected. Using a Kinetex PFP column, the organic concentration, gradient, and flow rate were optimized to maximize the resolution of phenolic compounds in a short 30-min analysis time. The optimized method was applied to three lentil genotypes with different phenolic compound profiles to provide information of value to breeding programs.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/isolamento & purificação , Lens (Planta)/química , Espectrometria de Massas/métodos , Sementes/química , Flavonoides/análise , Flavonoides/química , Reprodutibilidade dos Testes , Projetos de Pesquisa
11.
J Am Soc Mass Spectrom ; 25(7): 1274-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24796261

RESUMO

Recent reports describing enhanced performance when using gas additives in a DMS device (planar electrodes) have indicated that comparable benefits are not attainable using FAIMS (cylindrical electrodes), owing to the non-homogeneous electric fields within the analyzer region. In this study, a FAIMS system (having cylindrical electrodes) was modified to allow for controlled delivery of gas additives. An experiment was carried out that illustrates the important distinction between gas modifiers present as unregulated contaminants and modifiers added in a controlled manner. The effect of contamination was simulated by adjusting the ESI needle position to promote incomplete desolvation, thereby permitting ESI solvent vapor into the FAIMS analyzer region, causing signal instability and irreproducible CV values. However, by actively controlling the delivery of the gas modifier, reproducible CV spectra were obtained. The effects of adding different gas modifiers were examined using 15 positive ions having mass-to-charge (m/z) values between 90 and 734. Significant improvements in peak capacity and increases in ion transmission were readily attained by adding acetonitrile vapor, even at trace levels (≤0.1%). Increases in signal intensity were greatest for the low m/z ions; for the six lowest molecular weight species, signal intensities increased by ∼10- to over 100-fold compared with using nitrogen without gas additives, resulting in equivalent or better signal intensities compared with ESI without FAIMS. These results confirm that analytical benefits derived from the addition of gas modifiers reported with a uniform electric field (DMS) also are observed using a non-homogenous electric field (FAIMS) in the analyser region.

12.
BMC Plant Biol ; 13: 12, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23347725

RESUMO

BACKGROUND: Bitter acids (e.g. humulone) are prenylated polyketides synthesized in lupulin glands of the hop plant (Humulus lupulus) which are important contributors to the bitter flavour and stability of beer. Bitter acids are formed from acyl-CoA precursors derived from branched-chain amino acid (BCAA) degradation and C5 prenyl diphosphates from the methyl-D-erythritol 4-phosphate (MEP) pathway. We used RNA sequencing (RNA-seq) to obtain the transcriptomes of isolated lupulin glands, cones with glands removed and leaves from high α-acid hop cultivars, and analyzed these datasets for genes involved in bitter acid biosynthesis including the supply of major precursors. We also measured the levels of BCAAs, acyl-CoA intermediates, and bitter acids in glands, cones and leaves. RESULTS: Transcripts encoding all the enzymes of BCAA metabolism were significantly more abundant in lupulin glands, indicating that BCAA biosynthesis and subsequent degradation occurs in these specialized cells. Branched-chain acyl-CoAs and bitter acids were present at higher levels in glands compared with leaves and cones. RNA-seq analysis showed the gland-specific expression of the MEP pathway, enzymes of sucrose degradation and several transcription factors that may regulate bitter acid biosynthesis in glands. Two branched-chain aminotransferase (BCAT) enzymes, HlBCAT1 and HlBCAT2, were abundant, with gene expression quantification by RNA-seq and qRT-PCR indicating that HlBCAT1 was specific to glands while HlBCAT2 was present in glands, cones and leaves. Recombinant HlBCAT1 and HlBCAT2 catalyzed forward (biosynthetic) and reverse (catabolic) reactions with similar kinetic parameters. HlBCAT1 is targeted to mitochondria where it likely plays a role in BCAA catabolism. HlBCAT2 is a plastidial enzyme likely involved in BCAA biosynthesis. Phylogenetic analysis of the hop BCATs and those from other plants showed that they group into distinct biosynthetic (plastidial) and catabolic (mitochondrial) clades. CONCLUSIONS: Our analysis of the hop transcriptome significantly expands the genomic resources available for this agriculturally-important crop. This study provides evidence for the lupulin gland-specific biosynthesis of BCAAs and prenyl diphosphates to provide precursors for the production of bitter acids. The biosynthetic pathway leading to BCAAs in lupulin glands involves the plastidial enzyme, HlBCAT2. The mitochondrial enzyme HlBCAT1 degrades BCAAs as the first step in the catabolic pathway leading to branched chain-acyl-CoAs.


Assuntos
Cicloexenos/metabolismo , Perfilação da Expressão Gênica/métodos , Humulus/genética , Humulus/metabolismo , Terpenos/metabolismo , Humulus/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais
13.
Chem Commun (Camb) ; 49(3): 276-8, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23175157

RESUMO

Thiol-stabilized Au(25)L(18) monolayer protected clusters (MPCs) were found to be active for the reduction of 4-nitrophenol. Results suggest that these MPCs are stable catalysts and do not lose their structural integrity during the catalytic process. High stability under the reaction conditions enables the recyclability of these MPCs.

14.
Plant J ; 71(3): 353-65, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22353623

RESUMO

The psychoactive and analgesic cannabinoids (e.g. Δ(9) -tetrahydrocannabinol (THC)) in Cannabis sativa are formed from the short-chain fatty acyl-coenzyme A (CoA) precursor hexanoyl-CoA. Cannabinoids are synthesized in glandular trichomes present mainly on female flowers. We quantified hexanoyl-CoA using LC-MS/MS and found levels of 15.5 pmol g(-1) fresh weight in female hemp flowers with lower amounts in leaves, stems and roots. This pattern parallels the accumulation of the end-product cannabinoid, cannabidiolic acid (CBDA). To search for the acyl-activating enzyme (AAE) that synthesizes hexanoyl-CoA from hexanoate, we analyzed the transcriptome of isolated glandular trichomes. We identified 11 unigenes that encoded putative AAEs including CsAAE1, which shows high transcript abundance in glandular trichomes. In vitro assays showed that recombinant CsAAE1 activates hexanoate and other short- and medium-chained fatty acids. This activity and the trichome-specific expression of CsAAE1 suggest that it is the hexanoyl-CoA synthetase that supplies the cannabinoid pathway. CsAAE3 encodes a peroxisomal enzyme that activates a variety of fatty acid substrates including hexanoate. Although phylogenetic analysis showed that CsAAE1 groups with peroxisomal AAEs, it lacked a peroxisome targeting sequence 1 (PTS1) and localized to the cytoplasm. We suggest that CsAAE1 may have been recruited to the cannabinoid pathway through the loss of its PTS1, thereby redirecting it to the cytoplasm. To probe the origin of hexanoate, we analyzed the trichome expressed sequence tag (EST) dataset for enzymes of fatty acid metabolism. The high abundance of transcripts that encode desaturases and a lipoxygenase suggests that hexanoate may be formed through a pathway that involves the oxygenation and breakdown of unsaturated fatty acids.


Assuntos
Acil Coenzima A/biossíntese , Canabinoides/biossíntese , Cannabis/enzimologia , Proteínas de Plantas/genética , Transcriptoma/genética , Sequência de Aminoácidos , Sequência de Bases , Cannabis/química , Cannabis/genética , Caproatos/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Citoplasma/enzimologia , Flores/química , Flores/enzimologia , Flores/genética , Biblioteca Gênica , Cinética , Dados de Sequência Molecular , Especificidade de Órgãos , Peroxissomos/enzimologia , Filogenia , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Caules de Planta/química , Caules de Planta/enzimologia , Caules de Planta/genética , Alinhamento de Sequência
15.
Phytochemistry ; 69(15): 2678-88, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18823922

RESUMO

Developing seeds of Brassica napus contain significant levels of ABA and products of oxidation at the 7'- and 9'-methyl groups of ABA, 7'- and 9'-hydroxy ABA, as well stable products of oxidation of the 8'-methyl group, phaseic acid and dihydrophaseic acid. To probe the biological roles of the initially formed hydroxylated compounds, we have compared the effects of supplied ABA and the hydroxylated metabolites in regulating oil synthesis in microspore-derived embryos of B. napus, cv Hero that accumulate long chain fatty acids. Uptake into the embryos and metabolism of each of the hormone metabolites was studied by using deuterium labeled analogs. Supplied ABA, which was rapidly metabolized, induced expression of oleosin and fatty acid elongase genes and increased the accumulation of triacylglycerols and very long chain fatty acids. The metabolites 7'- and 9'-hydroxy ABA had similar effects, with the 9'-hydroxy ABA having even greater activity than ABA. The principal catabolite of ABA, 8'-hydroxy ABA, also had hormonal activity and led to increased oil synthesis but induced the genes weakly. These results indicate that all compounds tested could be involved in lipid synthesis in B. napus, and may have hormonal roles in other ABA-regulated processes.


Assuntos
Ácido Abscísico/metabolismo , Brassica napus/metabolismo , Hormônios/metabolismo , Óleos/metabolismo , Sementes/metabolismo , Esporos/metabolismo , Ácido Abscísico/farmacologia , Acetiltransferases/metabolismo , Brassica napus/embriologia , Brassica napus/genética , Elongases de Ácidos Graxos , Ácidos Graxos Monoinsaturados/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hormônios/farmacologia , Proteínas de Plantas/genética , Sementes/embriologia , Sementes/genética , Triglicerídeos/metabolismo
16.
Plant J ; 50(3): 414-28, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17376162

RESUMO

Changes in gene expression produced by the application of (+)-abscisic acid (ABA) to Arabidopsis thaliana plants were compared with changes produced by the ABA structural analogs (-)-ABA, (+)-8'-acetylene ABA and (-)-2',3'-dihydroacetylenic abscisyl alcohol. The maximum expression of many rapidly (+)-ABA-induced genes occurred prior to peak hormone accumulation, suggesting negative feedback regulation that may be mediated by the induction of genes encoding PP2C-type protein phosphatases. For most rapidly (+)-ABA-induced genes, expression was delayed in ABA analog treatments although analogs accumulated to higher levels than did (+)-ABA. For each analog, some genes exhibited a hypersensitive response to the analog and some genes were less sensitive to the analog than to (+)-ABA. Variations in the sensitivity of gene expression to (+)-ABA and analogs reflect the different structural requirements of two or more classes of hormone receptors. By using ABA analogs to reveal and confirm weakly (+)-ABA-regulated genes, we estimate that 14% of Arabidopsis genes are ABA-regulated in aerial tissues. Treatments with the analog (+)-8'-acetylene ABA (PBI425) led to the identification of new ABA-regulated genes. As an example, the transcription factor MYBR1 was significantly induced by PBI425, but not by (+)-ABA, and is shown to play a role in ABA signaling by phenotypic analysis of gain-of-function and loss-of-function mutants.


Assuntos
Ácido Abscísico/análogos & derivados , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Abscísico/química , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estrutura Molecular , Família Multigênica , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Plant J ; 46(3): 492-502, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16623908

RESUMO

A glucosyltransferase (GT) of Arabidopsis, UGT71B6, recognizing the naturally occurring enantiomer of abscisic acid (ABA) in vitro, has been used to disturb ABA homeostasis in planta. Transgenic plants constitutively overexpressing UGT71B6 (71B6-OE) have been analysed for changes in ABA and the related ABA metabolites abscisic acid glucose ester (ABA-GE), phaseic acid (PA), dihydrophaseic acid (DPA), 7'-hydroxyABA and neo-phaseic acid. Overexpression of the GT led to massive accumulation of ABA-GE and reduced levels of the oxidative metabolites PA and DPA, but had marginal effect on levels of free ABA. The control of ABA homeostasis, as reflected in levels of the different metabolites, differed in the 71B6-OEs whether the plants were grown under standard conditions or subjected to wilt stress. The impact of increased glucosylation of ABA on ABA-related phenotypes has also been assessed. Increased glucosylation of ABA led to phenotypic changes in post-germinative growth. The use of two structural analogues of ABA, known to have biological activity but to differ in their capacity to act as substrates for 71B6 in vitro, confirmed that the phenotypic changes arose specifically from the increased glucosylation caused by overexpression of 71B6. The phenotype and profile of ABA and related metabolites in a knockout line of 71B6, relative to wild type, has been assessed during Arabidopsis development and following stress treatments. The lack of major changes in these parameters is discussed in the context of functional redundancy of the multigene family of GTs in Arabidopsis.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Glicosiltransferases/fisiologia , Ácido Abscísico/análogos & derivados , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ésteres , Glicosiltransferases/genética , Homeostase , Família Multigênica/fisiologia , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Água/metabolismo
18.
Plant J ; 42(1): 35-48, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15773852

RESUMO

In Arabidopsis thaliana, the etr1-2 mutation confers dominant ethylene insensitivity and results in a greater proportion of mature seeds that exhibit dormancy compared with mature seeds of the wild-type. We investigated the impact of the etr1-2 mutation on other plant hormones by analyzing the profiles of four classes of plant hormones and their metabolites by HPLC-ESI/MS/MS in mature seeds of wild-type and etr1-2 plants. Hormone metabolites were analyzed in seeds imbibed immediately under germination conditions, in seeds subjected to a 7-day moist-chilling (stratification) period, and during germination/early post-germinative growth. Higher than wild-type levels of abscisic acid (ABA) appeared to contribute, at least in part, to the greater incidence of dormancy in mature seeds of etr1-2. The lower levels of abscisic acid glucose ester (ABA-GE) in etr1-2 seeds compared with wild-type seeds under germination conditions (with and without moist-chilling treatments) suggest that reduced metabolism of ABA to ABA-GE likely contributed to the accumulation of ABA during germination in the mutant. The mutant seeds exhibited generally higher auxin levels and a large build-up of indole-3-aspartate when placed in germination conditions following moist-chilling. The mutant manifested increased levels of cytokinin glucosides through zeatin-O-glucosylation (Z-O-Glu). The resulting increase in Z-O-Glu was the largest and most consistent change associated with the ETR1 gene mutation. There were more gibberellins (GA) and at higher concentrations in the mutant than in wild-type. Our results suggest that ethylene signaling modulates the metabolism of all the other plant hormone pathways in seeds. Additionally, the hormone profiles of etr1-2 seed during germination suggest a requirement for higher than wild-type levels of GA to promote germination in the absence of a functional ethylene signaling pathway.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Citocininas/metabolismo , Germinação/fisiologia , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Mutação , Sementes/fisiologia , Fatores de Tempo
19.
Phytochemistry ; 65(24): 3199-209, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15561186

RESUMO

In a biotransformation study to prepare deuterium labelled phaseic acid (PA) from deuterated abscisic acid (ABA), the product contained fewer deuterium atoms than expected. Thus, spectroscopic data of isolated deuterated PA prepared from biotransformation of (+)-5,8',8',8'-d4-ABA in maize (Zea mays L. cv. Black Mexican Sweet) cell suspension cultures showed 83% deuterium incorporation at the 8'-exo position. Also, metabolism studies of (+)-4,5-d2-ABA in maize resulted in the isolation of deuterium labelled ABA derivatives, namely PA, dihydrophaseic acid (DPA), 4'-O-beta-D-glucopyranosylDPA, 8'-hydroxyPA, 8'-hydroxyDPA and 8'-oxoDPA, as deduced from spectroscopic methods. These combined results suggested the presence of an aldehyde intermediate which is either: (a) reduced to 8'-hydroxyABA and cyclized to PA, or (b) is hydrated and cyclized to 8'-hydroxyPA or (c) is further oxidized to the acid and cyclized to 8'-oxoPA. The chemical synthesis of this intermediate, as well as its biotransformation in maize cell cultures is presented.


Assuntos
Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Zea mays/metabolismo , Ácido Abscísico/química , Células Cultivadas , Deutério/química , Hidroxilação , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Oxirredução , Reguladores de Crescimento de Plantas/química , Zea mays/citologia
20.
Anal Biochem ; 329(2): 324-33, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15158494

RESUMO

A specific, sensitive, and accurate method for determination of abscisic acid (ABA) in plant tissues is described. The method employs reversed-phase high-performance liquid chromatography and electrospray ionization-tandem mass spectrometry for multiple reaction monitoring of underivatized ABA and deuterated ABA analogs. Specific analogs were used to study the mechanism of ABA fragmentation, to select appropriate standards, and to identify compounds suitable for metabolic studies involving the supply of differentially labeled ABA. Limits of detection and quantification of 1.9 and 4.7 pg, respectively, were obtained over a linear calibration range of 0-1.5 ng ABA (on-column injected) using 5.8', 8', 8'-d(4) ABA as the internal standard. Accuracy and precision were within 15% for routine quality control samples. The method of standard additions, as applied to Arabidopsis thaliana seed extracts, was also used to validate the method for analysis of plant tissue samples. The utility of the method was further demonstrated by determining levels of ABA in western white pine seeds and of ABA and supplied 8', 8', 8', 9', 9', 9'-d(6) ABA in Brassica napus tissues, using 5.8', 8', 8'-d(4) ABA or 8', 8', 8'-d(3) ABA as the internal standard. Limits of quantification as low as 0.89 ng/g were achieved by optimizing the extraction procedure for each type of plant tissue.


Assuntos
Ácido Abscísico/análise , Deutério/metabolismo , Plantas/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA