RESUMO
The cell cycle-regulated DNA methyltransferase CcrM is conserved in most Alphaproteobacteria, but its role in bacteria with complex or multicentric genomes remains unexplored. Here, we compare the methylome, the transcriptome and the phenotypes of wild-type and CcrM-depleted Agrobacterium tumefaciens cells with a dicentric chromosome with two essential replication origins. We find that DNA methylation has a pleiotropic impact on motility, biofilm formation and viability. Remarkably, CcrM promotes the expression of the repABCCh2 operon, encoding proteins required for replication initiation/partitioning at ori2, and represses gcrA, encoding a conserved global cell cycle regulator. Imaging ori1 and ori2 in live cells, we show that replication from ori2 is often delayed in cells with a hypo-methylated genome, while ori2 over-initiates in cells with a hyper-methylated genome. Further analyses show that GcrA promotes the expression of the RepCCh2 initiator, most likely through the repression of a RepECh2 anti-sense RNA. Altogether, we propose that replication at ori1 leads to a transient hemi-methylation and activation of the gcrA promoter, allowing repCCh2 activation by GcrA and contributing to initiation at ori2. This study then uncovers a novel and original connection between CcrM-dependent DNA methylation, a conserved epigenetic regulator and genome maintenance in an Alphaproteobacterial pathogen.
Assuntos
Agrobacterium tumefaciens , Proteínas de Bactérias , Metilação de DNA , Replicação do DNA , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Origem de Replicação , Agrobacterium tumefaciens/genética , Replicação do DNA/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Origem de Replicação/genética , Regiões Promotoras Genéticas , Biofilmes/crescimento & desenvolvimento , Óperon/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)RESUMO
The relation of astrocytic endfeet to the vasculature plays a key functional role in the neuro-glia-vasculature unit. We characterize the spatial organization of astrocytes and the structural aspects that facilitate their involvement in molecular exchanges. Using double transgenic mice, we performed co-immunostaining, confocal microscopy, and three-dimensional digital segmentation to investigate the biophysical and molecular organization of astrocytes and their intricate endfoot network at the micrometer level in the isocortex and hippocampus. The results showed that hippocampal astrocytes had smaller territories, reduced endfoot dimensions, and fewer contacts with blood vessels compared with those in the isocortex. Additionally, we found that both connexins 43 and 30 have a higher density in the endfoot and the former is overexpressed relative to the latter. However, due to the limitations of the method, further studies are needed to determine the exact localization on the endfoot. The quantitative information obtained in this study will be useful for modeling the interactions of astrocytes with the vasculature.
RESUMO
BACKGROUND: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney, caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative mode of action, wherein an increased level of AFF3 resulted in pathological effects. METHODS: Evolutionary constraints suggest that other modes-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be damaging variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. RESULTS: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous Loss-of-Function (LoF) or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not rescue these phenotypes. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring + / + , KINSSHIP/KINSSHIP, LoF/ + , LoF/LoF or KINSSHIP/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the KINSSHIP/KINSSHIP or the LoF/LoF lines. While the same pathways are affected, only about one third of the differentially expressed genes are common to the homozygote datasets, indicating that AFF3 LoF and KINSSHIP variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. CONCLUSIONS: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.
Assuntos
Deficiência Intelectual , Transcriptoma , Peixe-Zebra , Animais , Feminino , Humanos , Masculino , Deficiência Intelectual/genética , Mutação com Perda de Função , Mutação de Sentido Incorreto , Fenótipo , Peixe-Zebra/genéticaRESUMO
BACKGROUND: recently much studies evidenced the potential role of photo-biomodulation (PBM) in patients affected by Age-related Macular Degeneration (AMD). We designed a new wearable device for self-medication that employs the same broadband red light described in literature, but with extremely low irradiance. AIM: to demonstrate the safety and effectiveness of low-fluence light stimulations emitted by a LED source with appropriate wavelengths through our new device in improving short-term visual function in patients affected by severe non neovascular AMD. MATERIALS AND METHODS: we prospectively enrolled patients affected by severe non-neovascular AMD with a relative sparing of the foveal region. All the patients were randomly assigned in placebo or in treatment group. The treatment consisted of 10 sessions of 10-min each, using the new device comprised of micro-LEDs that emitted light onto an amorphous support assembled within Metallic eyeglasses. The placebo group blindly underwent the same number of PBM sessions with the micro-LED turned off. Before and after each placebo/treatment sessions all the patients received: optical coherence tomography (OCT), Best-Corrected Visual Acuity (BCVA) and Microperimetry (MP). RESULTS: no significant differences in the anatomical parameters were observed in the two groups. The MP mean sensitivity and the central visual function both far and near significantly improved in the treated group (respectively p < 0.001, p < 0.001). CONCLUSIONS: our pivotal demonstrated that the LED PBM delivered through our new device is a safe and effective tool for improving short-term visual function in patients affected by severe non-neovascular AMD.
RESUMO
Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney,caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative (DN) mode-of-action, wherein an increased level of AFF3 resulted in pathological effects. Methods: Evolutionary constraints suggest that other mode-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be deleterious variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous LoF or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not complement. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring +/+, DN/DN, LoF/+, LoF/LoF or DN/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the DN/DN or the LoF/LoF lines. While the same pathways are affected, only about one-third of the differentially expressed genes are common to these homozygote datasets, indicating that AFF3 LoF and DN variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.
RESUMO
For ethical, economical, and scientific reasons, animal experimentation, used to evaluate the potential neurotoxicity of chemicals before their release in the market, needs to be replaced by new approach methodologies. To illustrate the use of new approach methodologies, the human induced pluripotent stem cell-derived 3D model BrainSpheres was acutely (48 h) or repeatedly (7 days) exposed to amiodarone (0.625-15 µM), a lipophilic antiarrhythmic drug reported to have deleterious effects on the nervous system. Neurotoxicity was assessed using transcriptomics, the immunohistochemistry of cell type-specific markers, and real-time reverse transcription-polymerase chain reaction for various genes involved in the lipid metabolism. By integrating distribution kinetics modeling with neurotoxicity readouts, we show that the observed time- and concentration-dependent increase in the neurotoxic effects of amiodarone is driven by the cellular accumulation of amiodarone after repeated dosing. The development of a compartmental in vitro distribution kinetics model allowed us to predict the change in cell-associated concentrations in BrainSpheres with time and for different exposure scenarios. The results suggest that human cells are intrinsically more sensitive to amiodarone than rodent cells. Amiodarone-induced regulation of lipid metabolism genes was observed in brain cells for the first time. Astrocytes appeared to be the most sensitive human brain cell type in vitro. In conclusion, assessing readouts at different molecular levels after the repeat dosing of human induced pluripotent stem cell-derived BrainSpheres in combination with the compartmental modeling of in vitro kinetics provides a mechanistic means to assess neurotoxicity pathways and refine chemical safety assessment for humans.
RESUMO
Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams.
Assuntos
Medula Óssea , Hematologia , Humanos , Medula Óssea/patologia , Fluxo de Trabalho , Células da Medula Óssea/patologia , Exame de Medula ÓsseaRESUMO
The transforming growth factor-ß (TGF-ß) family member activin A (hereafter Activin-A) is overexpressed in many cancer types, often correlating with cancer-associated cachexia and poor prognosis. Activin-A secretion by melanoma cells indirectly impedes CD8+ T cell-mediated anti-tumor immunity and promotes resistance to immunotherapies, even though Activin-A can be proinflammatory in other contexts. To identify underlying mechanisms, we here analyzed the effect of Activin-A on syngeneic grafts of Braf mutant YUMM3.3 mouse melanoma cells and on their microenvironment using single-cell RNA sequencing. We found that the Activin-A-induced immune evasion was accompanied by a proinflammatory interferon signature across multiple cell types, and that the associated increase in tumor growth depended at least in part on pernicious STING activity within the melanoma cells. Besides corroborating a role for proinflammatory signals in facilitating immune evasion, our results suggest that STING holds considerable potential as a therapeutic target to mitigate tumor-promoting Activin-A signaling at least in melanoma.
Assuntos
Ativinas , Melanoma , Fator de Crescimento Transformador beta , Evasão Tumoral , Animais , Camundongos , Ativinas/metabolismo , Melanoma/imunologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Microambiente TumoralRESUMO
More than 70% of human breast cancers (BCs) are estrogen receptor α-positive (ER+). A clinical challenge of ER+ BC is that they can recur decades after initial treatments. Mechanisms governing latent disease remain elusive due to lack of adequate in vivo models. We compare intraductal xenografts of ER+ and triple-negative (TN) BC cells and demonstrate that disseminated TNBC cells proliferate similarly as TNBC cells at the primary site whereas disseminated ER+ BC cells proliferate slower, they decrease CDH1 and increase ZEB1,2 expressions, and exhibit characteristics of epithelial-mesenchymal plasticity (EMP) and dormancy. Forced E-cadherin expression overcomes ER+ BC dormancy. Cytokine signalings are enriched in more active versus inactive disseminated tumour cells, suggesting microenvironmental triggers for awakening. We conclude that intraductal xenografts model ER + BC dormancy and reveal that EMP is essential for the generation of a dormant cell state and that targeting exit from EMP has therapeutic potential.
Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Estrogen and progesterone receptor (ER, PR) signaling control breast development and impinge on breast carcinogenesis. ER is an established driver of ER + disease but the role of the PR, itself an ER target gene, is debated. We assess the issue in clinically relevant settings by a genetic approach and inject ER + breast cancer cell lines and patient-derived tumor cells to the milk ducts of immunocompromised mice. Such ER + xenografts were exposed to physiologically relevant levels of 17-ß-estradiol (E2) and progesterone (P4). We find that independently both premenopausal E2 and P4 levels increase tumor growth and combined treatment enhances metastatic spread. The proliferative responses are patient-specific with MYC and androgen receptor (AR) signatures determining P4 response. PR is required for tumor growth in patient samples and sufficient to drive tumor growth and metastasis in ER signaling ablated tumor cells. Our findings suggest that endocrine therapy may need to be personalized, and that abrogating PR expression can be a therapeutic option.
Assuntos
Neoplasias da Mama , Receptores de Progesterona , Animais , Neoplasias da Mama/metabolismo , Estradiol/farmacologia , Estradiol/uso terapêutico , Feminino , Humanos , Camundongos , Progesterona/farmacologia , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismoRESUMO
One of the hallmarks of COVID-19 is the cytokine storm that provokes primarily pneumonia followed by systemic inflammation. Emerging evidence has identified a potential link between elevated interleukin-17A (IL-17A) levels and disease severity and progression. Considering that per se, IL-17A can activate several inflammatory pathways, it is plausible to hypothesize an involvement of this cytokine in COVID-19 clinical outcomes. Thus, IL-17A could represent a marker of disease progression and/or a target to develop therapeutic strategies. This hypothesis paper aims to propose this "unique" cytokine as a silent amplifier of the COVID-19 immune response and (potentially) related therapy.
Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Síndrome da Liberação de Citocina , Interleucina-17 , Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/imunologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/imunologia , Progressão da Doença , Descoberta de Drogas , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-17/sangue , Interleucina-17/imunologia , Índice de Gravidade de DoençaRESUMO
Hormonal contraception exposes women to synthetic progesterone receptor (PR) agonists, progestins, and transiently increases breast cancer risk. How progesterone and progestins affect the breast epithelium is poorly understood because we lack adequate models to study this. We hypothesized that individual progestins differentially affect breast epithelial cell proliferation and hence breast cancer risk. Using mouse mammary tissue ex vivo, we show that testosterone-related progestins induce the PR target and mediator of PR signaling-induced cell proliferation receptor activator of NF-κB ligand (Rankl), whereas progestins with anti-androgenic properties in reporter assays do not. We develop intraductal xenografts of human breast epithelial cells from 36 women, show they remain hormone-responsive and that progesterone and the androgenic progestins, desogestrel, gestodene, and levonorgestrel, promote proliferation but the anti-androgenic, chlormadinone, and cyproterone acetate, do not. Prolonged exposure to androgenic progestins elicits hyperproliferation with cytologic changes. Androgen receptor inhibition interferes with PR agonist- and levonorgestrel-induced RANKL expression and reduces levonorgestrel-driven cell proliferation. Thus, different progestins have distinct biological activities in the breast epithelium to be considered for more informed choices in hormonal contraception.
Assuntos
Androgênios , Progestinas , Animais , Proliferação de Células , Anticoncepcionais , CamundongosRESUMO
Invasive lobular carcinoma (ILC) is the most frequent special histological subtype of breast cancer, typically characterized by loss of E-cadherin. It has clinical features distinct from other estrogen receptor-positive (ER+ ) breast cancers but the molecular mechanisms underlying its characteristic biology are poorly understood because we lack experimental models to study them. Here, we recapitulate the human disease, including its metastatic pattern, by grafting ILC-derived breast cancer cell lines, SUM-44 PE and MDA-MB-134-VI cells, into the mouse milk ducts. Using patient-derived intraductal xenografts from lobular and non-lobular ER+ HER2- tumors to compare global gene expression, we identify extracellular matrix modulation as a lobular carcinoma cell-intrinsic trait. Analysis of TCGA patient datasets shows matrisome signature is enriched in lobular carcinomas with overexpression of elastin, collagens, and the collagen modifying enzyme LOXL1. Treatment with the pan LOX inhibitor BAPN and silencing of LOXL1 expression decrease tumor growth, invasion, and metastasis by disrupting ECM structure resulting in decreased ER signaling. We conclude that LOXL1 inhibition is a promising therapeutic strategy for ILC.
Assuntos
Neoplasias da Mama , Carcinoma Lobular , Aminoácido Oxirredutases/genética , Animais , Carcinoma Lobular/genética , Matriz Extracelular , Feminino , Xenoenxertos , Humanos , Camundongos , Receptores de EstrogênioRESUMO
BACKGROUND: Positional weight matrix (PWM) is a de facto standard model to describe transcription factor (TF) DNA binding specificities. PWMs inferred from in vivo or in vitro data are stored in many databases and used in a plethora of biological applications. This calls for comprehensive benchmarking of public PWM models with large experimental reference sets. RESULTS: Here we report results from all-against-all benchmarking of PWM models for DNA binding sites of human TFs on a large compilation of in vitro (HT-SELEX, PBM) and in vivo (ChIP-seq) binding data. We observe that the best performing PWM for a given TF often belongs to another TF, usually from the same family. Occasionally, binding specificity is correlated with the structural class of the DNA binding domain, indicated by good cross-family performance measures. Benchmarking-based selection of family-representative motifs is more effective than motif clustering-based approaches. Overall, there is good agreement between in vitro and in vivo performance measures. However, for some in vivo experiments, the best performing PWM is assigned to an unrelated TF, indicating a binding mode involving protein-protein cooperativity. CONCLUSIONS: In an all-against-all setting, we compute more than 18 million performance measure values for different PWM-experiment combinations and offer these results as a public resource to the research community. The benchmarking protocols are provided via a web interface and as docker images. The methods and results from this study may help others make better use of public TF specificity models, as well as public TF binding data sets.
Assuntos
Domínios e Motivos de Interação entre Proteínas , Software , Fatores de Transcrição/metabolismo , Animais , Benchmarking , Sequenciamento de Cromatina por Imunoprecipitação , Humanos , CamundongosRESUMO
Estrogens and progesterone control breast development and carcinogenesis via their cognate receptors expressed in a subset of luminal cells in the mammary epithelium. How they control the extracellular matrix, important to breast physiology and tumorigenesis, remains unclear. Here we report that both hormones induce the secreted protease Adamts18 in myoepithelial cells by controlling Wnt4 expression with consequent paracrine canonical Wnt signaling activation. Adamts18 is required for stem cell activation, has multiple binding partners in the basement membrane and interacts genetically with the basal membrane-specific proteoglycan, Col18a1, pointing to the basement membrane as part of the stem cell niche. In vitro, ADAMTS18 cleaves fibronectin; in vivo, Adamts18 deletion causes increased collagen deposition during puberty, which results in impaired Hippo signaling and reduced Fgfr2 expression both of which control stem cell function. Thus, Adamts18 links luminal hormone receptor signaling to basement membrane remodeling and stem cell activation.
Assuntos
Proteínas ADAMTS/metabolismo , Hormônios/farmacologia , Glândulas Mamárias Animais/citologia , Nicho de Células-Tronco , Células-Tronco/metabolismo , Proteínas ADAMTS/deficiência , Proteínas ADAMTS/genética , Animais , Antígenos CD/metabolismo , Linhagem Celular , Autorrenovação Celular/efeitos dos fármacos , Epitélio/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Fibronectinas/metabolismo , Glicoproteínas/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Progesterona/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacosRESUMO
The Eukaryotic Promoter Database (EPD), available online at https://epd.epfl.ch, provides accurate transcription start site (TSS) information for promoters of 15 model organisms plus corresponding functional genomics data that can be viewed in a genome browser, queried or analyzed via web interfaces, or exported in standard formats (FASTA, BED, CSV) for subsequent analysis with other tools. Recent work has focused on the improvement of the EPD promoter viewers, which use the UCSC Genome Browser as visualization platform. Thousands of high-resolution tracks for CAGE, ChIP-seq and similar data have been generated and organized into public track hubs. Customized, reproducible promoter views, combining EPD-supplied tracks with native UCSC Genome Browser tracks, can be accessed from the organism summary pages or from individual promoter entries. Moreover, thanks to recent improvements and stabilization of ncRNA gene catalogs, we were able to release promoter collections for certain classes of ncRNAs from human and mouse. Furthermore, we developed automatic computational protocols to assign orphan TSS peaks to downstream genes based on paired-end (RAMPAGE) TSS mapping data, which enabled us to add nearly 9000 new entries to the human promoter collection. Since our last article in this journal, EPD was extended to five more model organisms: rhesus monkey, rat, dog, chicken and Plasmodium falciparum.
Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Células Eucarióticas/metabolismo , Genômica/métodos , Regiões Promotoras Genéticas , RNA não Traduzido , Animais , Humanos , Software , NavegadorRESUMO
Parkinson disease (PD) is characterized by a pivotal progressive loss of substantia nigra dopaminergic neurons and aggregation of α-synuclein protein encoded by the SNCA gene. Genome-wide association studies identified almost 100 sequence variants linked to PD in SNCA. However, the consequences of this genetic variability are rather unclear. Herein, our analysis on selective single nucleotide polymorphisms (SNPs) which are highly associated with the PD susceptibility revealed that several SNP sites attribute to the nucleosomes and overlay with bivalent regions poised to adopt either active or repressed chromatin states. We also identified large number of transcription factor (TF) binding sites associated with these variants. In addition, we located two docking sites in the intron-1 methylation prone region of SNCA which are required for the putative interactions with DNMT1. Taken together, our analysis reflects an additional layer of epigenomic contribution for the regulation of the SNCA gene in PD.
Assuntos
Epigênese Genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , Sítios de Ligação/genética , Cromatina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Conjuntos de Dados como Assunto , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Íntrons/genética , Nucleossomos/metabolismo , Doença de Parkinson/patologia , Polimorfismo de Nucleotídeo Único , Ligação Proteica/genética , Substância Negra/citologia , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/metabolismoRESUMO
Regulation of mRNA stability by RNA-protein interactions contributes significantly to quantitative aspects of gene expression. We have identified potential mRNA targets of the AU-rich element binding protein AUF1. Myc-tagged AUF1 p42 was induced in mouse NIH/3T3 cells and RNA-protein complexes isolated using anti-myc tag antibody beads. Bound mRNAs were analyzed with Affymetrix microarrays. We have identified 508 potential target mRNAs that were at least 3-fold enriched compared to control cells without myc-AUF1. 22.3% of the enriched mRNAs had an AU-rich cluster in the ARED Organism database, against 16.3% of non-enriched control mRNAs. The enrichment towards AU-rich elements was also visible by AREScore with an average value of 5.2 in the enriched mRNAs versus 4.2 in the control group. Yet, numerous mRNAs were enriched without a high ARE score. The enrichment of tetrameric and pentameric sequences suggests a broad AUF1 p42-binding spectrum at short U-rich sequences flanked by A or G. Still, some enriched mRNAs were highly unstable, as those of TNFSF11 (known as RANKL), KLF10, HES1, CCNT2, SMAD6, and BCL6. We have mapped some of the instability determinants. HES1 mRNA appeared to have a coding region determinant. Detailed analysis of the RANKL and BCL6 3'UTR revealed for both that full instability required two elements, which are conserved in evolution. In RANKL mRNA both elements are AU-rich and separated by 30 bases, while in BCL6 mRNA one is AU-rich and 60 bases from a non AU-rich element that potentially forms a stem-loop structure.
Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Ligante RANK/genética , Estabilidade de RNA/genética , Regiões 3' não Traduzidas/genética , Elementos Ricos em Adenilato e Uridilato/genética , Animais , Sítios de Ligação/genética , Células HEK293 , Ribonucleoproteína Nuclear Heterogênea D0 , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Humanos , Camundongos , Células NIH 3T3 , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Ligante RANK/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Summary: Transcription factors regulate gene expression by binding to specific short DNA sequences of 5-20 bp to regulate the rate of transcription of genetic information from DNA to messenger RNA. We present PWMScan, a fast web-based tool to scan server-resident genomes for matches to a user-supplied PWM or transcription factor binding site model from a public database. Availability and implementation: The web server and source code are available at http://ccg.vital-it.ch/pwmscan and https://sourceforge.net/projects/pwmscan, respectively. Supplementary information: Supplementary data are available at Bioinformatics online.
Assuntos
Genômica/métodos , Matrizes de Pontuação de Posição Específica , Sequências Reguladoras de Ácido Nucleico , Software , Fatores de Transcrição/metabolismo , DNA/metabolismo , Humanos , Ligação ProteicaRESUMO
The Mass Genome Annotation (MGA) repository is a resource designed to store published next generation sequencing data and other genome annotation data (such as gene start sites, SNPs, etc.) in a completely standardised format. Each sample has undergone local processing in order the meet the strict MGA format requirements. The original data source, the reformatting procedure and the biological characteristics of the samples are described in an accompanying documentation file manually edited by data curators. 10 model organisms are currently represented: Homo sapiens, Mus musculus, Danio rerio, Drosophila melanogaster, Apis mellifera, Caenorhabditis elegans, Arabidopsis thaliana, Zea mays, Saccharomyces cerevisiae and Schizosaccharomyces pombe. As of today, the resource contains over 24 000 samples. In conjunction with other tools developed by our group (the ChIP-Seq and SSA servers), it allows users to carry out a great variety of analysis task with MGA samples, such as making aggregation plots and heat maps for selected genomic regions, finding peak regions, generating custom tracks for visualizing genomic features in a UCSC genome browser window, or downloading chromatin data in a table format suitable for local processing with more advanced statistical analysis software such as R. Home page: http://ccg.vital-it.ch/mga/.