RESUMO
AIMS: Melanomas are recognised for their remarkable morphological plasticity. Some tumours may lose conventional features and/or acquire non-melanocytic characteristics, referred to as undifferentiated, dedifferentiated and transdifferentiated melanoma. Despite this phenotypical variability, melanomas typically maintain their cancer driver aberrations, affecting genes such as BRAF, NRAS and NF1. Currently, little is known about whether the DNA methylation profile follows the loss or change of differentiation or is retained despite extensive morphological transformation. METHODS AND RESULTS: In this study we analysed 11 melanoma cases, comprising six males and five females, with a median age of 67 years, including five undifferentiated, four trans-differentiated and two de-differentiated melanomas. Undifferentiated and trans-differentiated tumours either arose in a patient with known melanoma and/or presented in the groin/axilla with molecular alterations consistent with melanoma. Cases with heterologous differentiation resembled chondrosarcoma, osteosarcoma, angiosarcoma and rhabdomyosarcoma both morphologically and immunohistochemically, while undifferentiated tumours resembled undifferentiated pleomorphic sarcoma. Methylome profiling was performed, and unsupervised clustering analysis revealed nine cases (five undifferentiated, three trans-differentiated and one de-differentiated) to cluster closely together with conventional melanomas from a reference set. Two cases clustered separately with a distinct group of conventional melanomas exhibiting H3K27me3 loss. CONCLUSIONS: Despite loss of differentiation and phenotypical plasticity, methylation patterns seem to be retained in undifferentiated, de-differentiated and trans-differentiated melanomas and represent useful diagnostic tools to enhance diagnostic precision in these diagnostically challenging cases.
RESUMO
Odontogenic myxoma is a rare, benign, and locally aggressive tumor that develops in the tooth-bearing areas of the jaw. The molecular mechanisms underlying odontogenic myxomas are unknown and no diagnostic markers are available to date. The aim of this study was to analyze DNA methylation and copy number variations in odontogenic myxomas to identify new molecular signatures for diagnostic decision-making. We collected a cohort of 16 odontogenic myxomas from 2006 to 2021 located in the mandible (n = 10) and maxilla (n = 6) with available formalin-fixed paraffin-embedded or fresh frozen tumor tissue from a biopsy or resection material. Genome-wide DNA methylation and copy number variation data were generated from 12 odontogenic myxomas using the Illumina Infinium Methylation EPIC array, interrogating >850,000 CpG sites. Unsupervised clustering and dimensionality reduction (Uniform Manifold Approximation and Projection) revealed that odontogenic myxomas formed a distinct DNA methylation class. Copy number profiling showed recurrent whole-chromosome gains (trisomies) of chromosomes 5, 8, and 20 in all cases, and of chromosomes 10, 12, and 17 in all except one case. In conclusion, odontogenic myxomas harbor recurrent copy number patterns and a distinct DNA methylation profile, which can be used as an additional diagnostic tool in the appropriate clinical and radiologic context. Further research is needed to explain the genetic mechanisms caused by these alterations that drive these locally aggressive neoplasms.
Assuntos
Variações do Número de Cópias de DNA , Metilação de DNA , Tumores Odontogênicos , Humanos , Feminino , Masculino , Tumores Odontogênicos/genética , Tumores Odontogênicos/patologia , Pessoa de Meia-Idade , Adulto , Idoso , Mixoma/genética , Mixoma/patologia , Adulto Jovem , Neoplasias Mandibulares/genética , Neoplasias Mandibulares/patologia , Neoplasias Maxilares/genética , Neoplasias Maxilares/patologia , Biomarcadores Tumorais/genética , AdolescenteRESUMO
It is now understood that identical gene fusions may be shared by different entities. We report a distinctive neoplasm of the skin and subcutis, harboring the Ewing sarcoma-associated EWSR1::FLI1 fusion but differing otherwise from Ewing sarcoma. Slides and blocks for 5 cutaneous neoplasms coded as other than Ewing sarcoma and harboring EWSR1::FLI1 were retrieved. Immunohistochemical and molecular genetic results were abstracted from reports. Methylation profiling was performed. Clinical information was obtained. The tumors occurred in 4 men and 1 woman (median: 25 years of age; range: 19-69 years) and involved the skin/subcutis of the back (2), thigh, buttock, and chest wall (median: 2.4 cm; range: 1-11 cm). Two tumors were present "years" before coming to clinical attention. The lesions were multinodular and circumscribed and consisted of nests of bland, round cells admixed with hyalinized collagenous bands containing spindled cells. Hemorrhage and cystic change were often present; necrosis was absent. All were diffusely S100 protein/SOX10-positive; 4 of 5 were CD99-negative. One tested case was strongly positive for NKX2.2. A variety of other tested markers were either focally positive (glial fibrillary acidic protein, p63) or negative. Molecular genetic results were as follows: EWSR1 exon 7::FLI1 exon 8, EWSR1 exon 11::FLI1 exon 5, EWSR1 exon 11::FLI1 exon 6, EWSR1 exon 7::FLI1 exon 6, and EWSR1 exon 10::FLI1 exon 6. Methylation profiling (3 cases) showed these to form a unique cluster, distinct from Ewing sarcoma. All patients underwent excision with negative margins; one received 1 cycle of chemotherapy. Clinical follow-up showed all patients to be alive without disease (median: 17 months; range: 11-62 months). Despite similar gene fusions, the morphologic, immunohistochemical, epigenetic, and clinical features of these unique EWSR1::FLI1-fused neoplasms of the skin and subcutis differ substantially from Ewing sarcoma. Interestingly, EWSR1 rearrangements involved exons 10 or 11, only rarely seen in Ewing sarcoma, in a majority of cases. Superficial neurocristic EWSR1::FLI1 fusion tumors should be rigorously distinguished from true cutaneous Ewing sarcomas.
Assuntos
Biomarcadores Tumorais , Proteína Homeobox Nkx-2.2 , Proteínas de Fusão Oncogênica , Proteínas S100 , Fatores de Transcrição SOXE , Neoplasias Cutâneas , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Biomarcadores Tumorais/genética , Metilação de DNA , Proteínas de Homeodomínio , Imuno-Histoquímica , Proteínas Nucleares , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas S100/genética , Proteínas S100/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fatores de Transcrição SOXE/genética , Fatores de Transcrição/genéticaRESUMO
AIMS: The majority of dermatofibrosarcoma protuberans (DFSP) harbour PDGFB or PDGFD rearrangements. We encountered ALK expression/rearrangement in a PDGFB/D-negative CD34-positive spindle cell neoplasm with features similar to DFSP, prompting evaluation of ALK-rearrangements in DFSP and plaque-like CD34-positive dermal fibroma (P-LDF). METHODS AND RESULTS: We searched the archives of academic institutions for cases previously coded as DFSP and P-LDF. NGS-naïve or PDGFB-negative DFSP were screened for ALK (clone D5F3) expression by immunohistochemistry. NGS or ALK FISH was performed on ALK-positive cases. Methylome profiling studies were performed and compared with conventional DFSP. One case of "DFSP" and two "P-LDF" with ALK expression were identified from the archives, while four cases were detected prospectively. These seven cases (6F:1M; 8 months to 76 years) arose in the dermis of the arm (two), scalp, eyelid, thigh, abdomen, and shoulder and ranged from 0.4 to 4.2 cm. Tumours were composed of spindled cells and displayed a storiform growth pattern. Cytologic atypia was absent, and mitotic figures were scarce (0-2/10 HPFs, high power fields). The lesional cells were diffusely positive for CD34 and ALK and negative for S100 protein. By NGS (n = 5), ALK fusion partners included DCTN1 (2), PLEKHH2, and CLIP2 in DFSP-like cases and FLNA in P-LDF-like lesions. ALK FISH was positive in one (of two) cases previously labelled P-LDF. Methylome profiling of two (of three) ALK-rearranged DFSP-like tumours showed clustering with conventional DFSP in the UMAP dimension reduction plot. To date, no tumour has recurred (n = 2; 26, 27 months). CONCLUSION: We describe a cohort of novel ALK-rearranged tumours with morphologic features similar to DFSP.
Assuntos
Quinase do Linfoma Anaplásico , Antígenos CD34 , Dermatofibrossarcoma , Rearranjo Gênico , Neoplasias Cutâneas , Humanos , Dermatofibrossarcoma/genética , Dermatofibrossarcoma/patologia , Dermatofibrossarcoma/diagnóstico , Dermatofibrossarcoma/metabolismo , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Feminino , Masculino , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/diagnóstico , Antígenos CD34/metabolismo , Idoso , Adulto , Pessoa de Meia-Idade , Lactente , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Adolescente , Adulto Jovem , Criança , Pré-Escolar , Diagnóstico Diferencial , Imuno-Histoquímica , Hibridização in Situ FluorescenteRESUMO
Desmoplastic small round cell tumor (DSRCT) is a high-grade, primitive round cell sarcoma classically associated with prominent desmoplastic stroma, coexpression of keratin and desmin, and a characteristic EWSR1::WT1 gene fusion. DSRCT typically arises in the abdominopelvic cavity of young males with diffuse peritoneal spread and poor overall survival. Although originally considered to be pathognomonic for DSRCT, EWSR1::WT1 gene fusions have recently been detected in rare tumors lacking the characteristic morphologic and immunohistochemical features of DSRCT. Here, we report 3 additional cases of neoplasms other than conventional DSCRCT with EWSR1::WT1 gene fusions that occurred outside the female genital tract. Two occurred in the abdominopelvic cavities of a 27-year-old man and a 12-year-old girl, whereas the third arose in the axillary soft tissue of an 85-year-old man. All cases lacked prominent desmoplastic stroma and were instead solid and cystic with peripheral fibrous pseudocapsules and occasional intervening fibrous septa. Necrosis was either absent (1/3) or rare (2/3), and mitotic activity was low (<1 to 3 per 10 hpf). In immunohistochemical studies, there was expression of smooth muscle actin (3/3) and desmin (3/3), rare to focal reactivity for EMA (2/3), and variable expression of CK AE1/AE3 (1/3). Myogenin and MyoD1 were negative, and C-terminus-specific WT1 was positive in both cases tested (2/2). All 3 tumors followed a more indolent clinical course with 2 cases demonstrating no evidence of disease at 20 and 44 months after resection. The patient from case 3 died of other causes at 14 months with no evidence of recurrence. DNA methylation profiling showed that the 3 cases clustered with DSRCT; however, they demonstrated fewer copy number variations with 2 cases having a flat profile (0% copy number variation). Differential methylation analysis with hierarchical clustering further showed variation between the 3 cases and conventional DSRCT. Although further study is needed, our results, in addition to previous reports, suggest that EWSR1::WT1 gene fusions occur in rare and seemingly distinctive tumors other than conventional DSRCT with indolent behavior. Proper classification of these unusual soft tissue tumors with EWSR1::WT1 gene fusions requires direct correlation with tumor morphology and clinical behavior, which is essential to avoid overtreatment with aggressive chemotherapy.
Assuntos
Tumor Desmoplásico de Pequenas Células Redondas , Neoplasias de Tecidos Moles , Masculino , Humanos , Feminino , Criança , Idoso de 80 Anos ou mais , Adulto , Variações do Número de Cópias de DNA , Tumor Desmoplásico de Pequenas Células Redondas/genética , Tumor Desmoplásico de Pequenas Células Redondas/patologia , Desmina , Genitália Feminina/química , Genitália Feminina/metabolismo , Genitália Feminina/patologia , Proteínas de Fusão Oncogênica/análise , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Proteínas WT1/genéticaRESUMO
Adamantinoma-like Ewing sarcoma (ALES) has traditionally been considered a variant of Ewing sarcoma because it generally harbors EWSR1::FLI1 fusions despite showing diffuse positivity for keratins and p40. However, it has become increasingly recognized that different tumors can have identical translocations, including shared fusions between carcinomas and sarcomas, raising questions as to whether ALES might represent a separate entity. Using methylation profiling, we further explored the relationship between Ewing sarcoma and ALES. The archives of multiple institutions were searched for candidate cases of ALES. DNA methylation profiling was performed and results were compared to corresponding data from conventional Ewing sarcoma. Twelve cases of ALES (5 previously reported) were identified in 10 men and 2 women (aged 20-72 years; median age, 41.5 years). Cases included tumors arising in the parotid gland (3), sinonasal cavity (2), submandibular gland (2), thyroid gland (1), neck (1), gingiva (1), hypopharynx (1), and mandible (1). Histologic review consistently showed sheets and nests of basaloid cells within a fibromyxoid or hyalinized stroma. All tumors were positive for at least 1 keratin and CD99 expression, whereas all 10 cases tested were positive for p63 or p40; S100 protein expression was noted in 2 cases. Cases harbored either EWSR1::FLI1 fusions (n = 6), FUS::FLI1 fusions (n = 1), and/or EWSR1 rearrangements (n = 6). Methylation profiling was successful in 11/12 cases evaluated. Unsupervised clustering and dimensionality reduction (Uniform Manifold Approximation and Projection) of DNA methylation data revealed a distinct methylation cluster for all 11 cases, including the tumor with the FUS::FLI1 fusion, which clearly segregated them from the conventional Ewing sarcoma. Follow-up (n = 11, 1-154 months) revealed that 4 patients experienced recurrence and 6 developed metastatic disease. ALES demonstrates a distinct methylation signature from conventional Ewing sarcoma. This finding adds to the distinctive immunoprofile of ALES, suggesting that these 2 tumors should be considered distinct entities rather than histologic extremes of the same disease.
Assuntos
Adamantinoma , Sarcoma de Ewing , Sarcoma , Masculino , Humanos , Feminino , Adulto , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Adamantinoma/genética , Adamantinoma/patologia , Metilação de DNA , Proteína EWS de Ligação a RNA/genética , Sarcoma/genética , Rearranjo Gênico , Proteínas de Fusão Oncogênica/genéticaRESUMO
Mesenchymal chondrosarcoma (MCS) is a rare and highly aggressive tumour of soft tissue and bone that is defined by an underlying and highly specific fusion transcript involving HEY1 and NCOA2. Histologically, the tumours show a biphasic appearance consisting of an undifferentiated blue and round cell component as well as islands of highly differentiated cartilage. Particularly in core needle biopsies, the chondromatous component can be missed and the non-specific morphology and immunophenotype of the round cell component can cause diagnostic challenges. We applied NKX3.1 immunohistochemistry which was recently reported as a highly specific marker as well as methylome and copy number profiling to a set of 45 well characterised MCS cases to evaluate their potential diagnostic value. Methylome profiling revealed a highly distinct cluster for MCS. Notably, the findings were reproducible also when analysing the round cell and cartilaginous component separately. Furthermore, four outliers were identified by methylome profiling for which the diagnosis had to be revised. NKX3.1 immunohistochemistry showed positivity in 36% of tumours, the majority of which was rather focal and weak. Taken together, NKX3.1 expression showed a low sensitivity but a high specificity in our analysis. Methylome profiling on the other hand represents a sensitive, specific and reliable tool to support the diagnosis of MCS, particularly if only the round cell component is obtained in a biopsy and the diagnosis is not suspected. Furthermore, it can aid in confirming the diagnosis in case RNA sequencing for the HEY1::NCOA2 fusion transcript is not available.
Assuntos
Neoplasias Ósseas , Condrossarcoma Mesenquimal , Humanos , Condrossarcoma Mesenquimal/diagnóstico , Condrossarcoma Mesenquimal/genética , Condrossarcoma Mesenquimal/patologia , Imuno-Histoquímica , Epigenoma , Osso e Ossos/patologia , Diferenciação Celular , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologiaRESUMO
Extraskeletal myxoid chondrosarcoma (EMC) is a rare sarcoma of uncertain differentiation predominantly arising in deep soft tissue. Its conventional morphologic appearance manifests as a relatively well-circumscribed, multilobular tumor composed of uniform short spindle-to-ovoid primitive mesenchymal cells with deeply eosinophilic cytoplasm arranged in anastomosing cords within abundant myxoid matrix. The genetic hallmark of EMC has long been considered to be pathognomonic gene rearrangements involving NR4A3, which when fused to TAF15, often have high-grade morphology with increased cellularity, moderate to severe cytologic atypia, and rhabdoid cytomorphology. Herein, we describe two cases of EMC with TAF15::NR4A3 fusion that appear morphologically distinct from both conventional and high-grade EMC. Both cases had an unusual biphasic appearance and showed diffuse positivity for p63, mimicking myoepithelial tumors. DNA methylation profiling demonstrated that both cases clearly cluster with EMC, indicating that they most likely represent morphologically distinct variants of EMC. The clinical significance and prognostic impact of this morphologic variance remains to be determined. Molecular testing, including DNA methylation profiling, can help to confirm the diagnosis and avoid confusion with mimics; it adds another layer of data to support expanding the morphologic spectrum of EMC.
RESUMO
Cemento-osseous dysplasia (COD) belongs to the spectrum of benign fibro-osseous lesions occurring exclusively in the tooth-bearing areas of the jaws. Depending on site and extent of involvement, periapical, focal and florid subtypes can be distinguished that share an identical histomorphology. Most cases are asymptomatic and follow a self-limited course requiring no specific treatment. Over time, lesions progressively mineralise while the cellularity decreases. However, the molecular pathogenesis of COD, has not yet been explored. We analysed a series of 31 COD samples by targeted sequencing and detected pathogenic hotspot mutations involving the RAS-MAPK signalling pathway in 5/18 evaluable cases (28%). The mutations were found in the BRAF, HRAS, KRAS, NRAS, and FGFR3 genes. Our findings suggest that COD is driven by RAS-MAPK activation; however, the mechanism underlying the spontaneous growth arrest typically occuring in most of the lesions remains elusive.
Assuntos
Tumores Odontogênicos , Humanos , Mutação , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas ras/metabolismoRESUMO
Mesenchymal chondrosarcoma is a rare and aggressive sarcoma subtype with high risk for distant metastases and poor prognosis. Currently NCCN- and ESMO-Guidelines recommend using Ewing sarcoma protocols as standard treatment. Nevertheless, in localized disease overall 5-year survival rates are below 50% whereas in metastatic spread median progression-free survival rates of only 5 months can be expected. Here we present a patient with metastatic osseous spread of mesenchymal chondrosarcoma that showed a sustained clinical improvement and a good partial response on imaging over a period of one year when treated with the multi-tyrosine kinase inhibitor cabozantinib. Although we cannot explain the exact mechanism underlying this treatment effect, tumors with similar genetic patterns might respond to the same therapy as well.
RESUMO
Brown tumors are rare and generally self-limiting mass lesions of bone occurring in the context of hyperparathyroidism. Although commonly regarded as endocrine-driven tumor-like lesions, we detected pathogenic hotspot KRAS mutations in 10/16 brown tumors (62%) with similar frequencies found in cases affecting the peripheral and axial skeleton. Pathogenic mutations in other driver genes of the RAS-MAPK pathway were not identified. Our findings suggest brown tumors to represent true neoplasms driven by the activation of the RAS-MAPK signaling pathway. The frequent regression of brown tumors after normalization of hyperparathyroidism points to a second hit mediated by endocrine stimulation to be required for tumor development. Our findings underline the pathogenic relation of brown tumors to nonossifying fibroma and giant cell granuloma of the jaws which both appear histologically similar to brown tumors and are also driven by RAS-MAPK signaling pathway activation.
Assuntos
Fibroma , Granuloma de Células Gigantes , Hiperparatireoidismo , Granuloma de Células Gigantes/genética , Granuloma de Células Gigantes/patologia , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
Rearrangements of the transcription factors FOS and FOSB have recently been identified as the genetic driver event underlying osteoid osteoma and osteoblastoma. Nuclear overexpression of FOS and FOSB have since then emerged as a reliable surrogate marker despite limitations in specificity and sensitivity. Indeed, osteosarcoma can infrequently show nuclear FOS expression and a small fraction of osteoblastomas seem to arise independent of FOS/FOSB rearrangements. Acid decalcification and tissue preservation are additional factors that can negatively influence immunohistochemical testing and make diagnostic decision-making challenging in individual cases. Particularly aggressive appearing osteoblastomas, also referred to as epithelioid osteoblastomas, and osteoblastoma-like osteosarcoma can be difficult to distinguish, underlining the need for additional markers to support the diagnosis. Methylation and copy number profiling, a technique well established for the classification of brain tumors, might fill this gap. Here, we set out to comprehensively characterize a series of 77 osteoblastomas by immunohistochemistry, fluorescence in-situ hybridization as well as copy number and methylation profiling and compared our findings to histologic mimics. Our results show that osteoblastomas are uniformly characterized by flat copy number profiles that can add certainty in reaching the correct diagnosis. The methylation cluster formed by osteoblastomas, however, so far lacks specificity and can be misleading in individual cases.
Assuntos
Neoplasias Ósseas , Osteoblastoma , Osteossarcoma , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Variações do Número de Cópias de DNA , Humanos , Metilação , Osteoblastoma/diagnóstico , Osteoblastoma/genética , Osteoblastoma/metabolismo , Osteossarcoma/patologiaRESUMO
Osteoma is a benign bone forming tumor predominantly arising on the surface of craniofacial bones. While the vast majority of osteomas develops sporadically, a small subset of cases is associated with Gardner syndrome, a phenotypic variant of familial adenomatous polyposis caused by mutations in the APC gene resulting in aberrant activation of WNT/ß-catenin signaling. In a sequencing analysis on a cohort of sporadic, non-syndromal osteomas, we identified hotspot mutations in the CTNNB1 gene (encoding ß-catenin) in 22 of 36 cases (61.1%), harbouring allelic frequencies ranging from 0.04 to 0.53, with the known S45P variant representing the most frequent alteration. Based on NanoString multiplex expression profiling performed in a subset of cases, CTNNB1-mutated osteomas segregated in a defined "WNT-cluster", substantiating functionality of CTNNB1 mutations which are associated with ß-catenin stabilization. Our findings for the first time convincingly show that osteomas represent genetically-driven neoplasms and provide evidence that aberrant WNT/ß-catenin signaling plays a fundamental role in their pathogenesis, in line with the well-known function of WNT/ß-catenin in osteogenesis. Our study contributes to a better understanding of the molecular pathogenesis underlying osteoma development and establishes a helpful diagnostic molecular marker for morphologically challenging cases.
Assuntos
Osteoma , beta Catenina , Proteína da Polipose Adenomatosa do Colo/genética , Genes APC , Humanos , Mutação , Osteoma/genética , beta Catenina/genética , beta Catenina/metabolismoRESUMO
In the cranio-facial skeleton, a heterogeneous group of well characterized fibro-osseous lesions can be distinguished. Whereas fibrous dysplasia can affect any skeletal bone, ossifying fibroma and cemento-osseous dysplasia exclusively develop in the cranio-facial region, with most subtypes restricted to the tooth bearing areas of the jaws. Herein we present a series of 20 fibro-osseous lesions that developed mostly in the frontal bone and in the mandible, presenting as expansile intramedullary tumors with a unique histologic appearance and an indolent clinical course. We provide evidence that these tumors are distinct from the categories included in the WHO classification and are therefore currently unclassifiable. The definition of cemento-ossifying fibroma as an odontogenic neoplasm developing only in close proximity to teeth should be re-considered and incorporate also extragnathic lesions as shown here.
Assuntos
Cementoma , Fibroma Ossificante , Displasia Fibrosa Óssea , Tumores Odontogênicos , Neoplasias Cranianas , Neoplasias de Tecidos Moles , Cementoma/patologia , Fibroma Ossificante/patologia , Displasia Fibrosa Óssea/patologia , Humanos , Tumores Odontogênicos/patologia , Crânio , Neoplasias Cranianas/patologiaRESUMO
Although osteosarcoma (OS) is a rare cancer, it is the most common primary malignant bone tumor in children and adolescents. BRCAness is a phenotypical trait in tumors with a defect in homologous recombination repair, resembling tumors with inactivation of BRCA1/2, rendering these tumors sensitive to poly (ADP)-ribose polymerase inhibitors (PARPi). Recently, OS was shown to exhibit molecular features of BRCAness. Our goal was to develop a method complementing existing genomic methods to aid clinical decision making on administering PARPi in OS patients. OS samples with DNA-methylation data were divided to BRCAness-positive and negative groups based on the degree of their genomic instability (n = 41). Methylation probes were ranked according to decreasing variance difference between two groups. The top 2000 probes were selected for training and cross-validation of the random forest algorithm. Two-thirds of available OS RNA-Seq samples (n = 17) from the top and bottom of the sample list ranked according to genome instability score were subjected to differential expression and, subsequently, to gene set enrichment analysis (GSEA). The combined accuracy of trained random forest was 85% and the average area under the ROC curve (AUC) was 0.95. There were 449 upregulated and 1,079 downregulated genes in the BRCAness-positive group (fdr < 0.05). GSEA of upregulated genes detected enrichment of DNA replication and mismatch repair and homologous recombination signatures (FWER < 0.05). Validation of the BRCAness classifier with an independent OS set (n = 20) collected later in the course of study showed AUC of 0.87 with an accuracy of 90%. GSEA signatures computed for this test set were matching the ones observed in the training set enrichment analysis. In conclusion, we developed a new classifier based on DNA-methylation patterns that detects BRCAness in OS samples with high accuracy. GSEA identified genome instability signatures. Machine-learning and gene expression approaches add new epigenomic and transcriptomic aspects to already established genomic methods for evaluation of BRCAness in osteosarcoma and can be extended to cancers characterized by genome instability.
Assuntos
Neoplasias Ósseas/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/genética , Reparo do DNA , Instabilidade Genômica , HumanosRESUMO
Osteosarcomas are aggressive primary tumors of bone that are typically detected in locally advanced stages; however, which genetic mutations drive the cancer before its clinical detection remain unknown. To identify these events, we performed longitudinal genome-sequencing analysis of 12 patients with metastatic or refractory osteosarcoma. Phylogenetic and molecular clock analyses were carried out next to identify actionable mutations, and these were validated by integrating data from additional 153 osteosarcomas and pre-existing functional evidence from mouse PDX models. We found that the earliest and thus clinically most promising mutations affect the cell cycle G1 transition, which is guarded by cyclins D3, E1, and cyclin-dependent kinases 2, 4, and 6. Cell cycle G1 alterations originate no more than a year before the primary tumor is clinically detected and occur in >90% and 50% of patients of the discovery and validation cohorts, respectively. In comparison, other cancer driver mutations could be acquired at any evolutionary stage and often do not become pervasive. Consequently, our data support that the repertoire of actionable mutations present in every osteosarcoma cell is largely limited to cell cycle G1 mutations. Since they occur in mutually exclusive combinations favoring either CDK2 or CDK4/6 pathway activation, we propose a new genomically-based algorithm to direct patients to correct clinical trial options. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Algoritmos , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Osteossarcoma/genética , Neoplasias Ósseas/patologia , Humanos , Mutação , Osteossarcoma/patologia , FilogeniaRESUMO
BACKGROUND: Although considerable effort has been put into decoding of the osteosarcoma genome, very little is known about germline mutations that underlie this primary malignant tumour of bone. METHODS AND RESULTS: We followed here a coincidental finding in a multiple endocrine neoplasia family in which a 32-year-old patient carrying a germline pathogenic RET mutation developed an osteosarcoma 2 years after the resection of a medullary thyroid carcinoma. Sequencing analysis of additional 336 patients with osteosarcoma led to the identification of germline activating mutations in the RET proto-oncogene in three cases and somatic amplifications of the gene locus in five matched tumours (4%, n=5/124 tumours). Functional analysis of the pathogenic variants together with an integrative analysis of osteosarcoma genomes confirmed that the mutant RET proteins couple functional kinase activity to dysfunctional ligand binding. RET mutations further co-operated with alterations in TP53 and RB1, suggesting that osteosarcoma pathogenesis bears reminiscence to the stepwise model of medullary thyroid carcinoma. CONCLUSIONS: After Li-Fraumeni-predisposing mutations in TP53, RET becomes the second most mutated cancer-predisposing gene in the germline of patients with osteosarcoma. Hence, early identification of RET mutation carriers can help to identify at-risk family members and carry out preventive measures.
Assuntos
Carcinoma Neuroendócrino/genética , Osteossarcoma/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas de Ligação a Retinoblastoma/genética , Neoplasias da Glândula Tireoide/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Idoso , Carcinoma Neuroendócrino/complicações , Carcinoma Neuroendócrino/epidemiologia , Carcinoma Neuroendócrino/patologia , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Osteossarcoma/complicações , Osteossarcoma/epidemiologia , Osteossarcoma/patologia , Pediatria , Proto-Oncogene Mas , Neoplasias da Glândula Tireoide/complicações , Neoplasias da Glândula Tireoide/epidemiologia , Neoplasias da Glândula Tireoide/patologiaRESUMO
According to the World Health Organization (WHO) classification, tumors showing hematogenous spread in less than 2% of cases are categorized as "rarely metastasizing" and constitute a group of neoplasms of intermediate malignancy. Since its introduction in 2002, chondroblastoma has been considered one of the prototypic examples of this category of lesions. In the fifth and only recently published edition of the WHO classification of bone and soft tissue tumors, however, chondroblastoma was re-classified from rarely metastasizing to benign due to the rarity of cases with systemic spread. Here, we present a remarkable case of a 54-year-old male who presented with an expansile tumor in his left acromion that was diagnosed as chondroblastoma following biopsy. Three years later a local recurrence was noted during routine follow-up and a bone scan detected hypermetabolic lesions in a rib and the thoracic spine. Over time, he developed multifocal skeletal spread as well as soft tissue and pulmonary metastases, which histologically all revealed conventional chondroblastoma morphology and the highly specific H3-3B point mutation (p.Lys36Met). Thirteen years after initial diagnosis he is currently treated with experimental immunotherapy and shows stable but disseminated disease. Our case highlights that although metastasizing chondroblastoma is rare, potential systemic spread should be kept in mind in patients with chondroblastoma despite the new WHO classification.
Assuntos
Neoplasias Ósseas , Condroblastoma , Neoplasias de Tecidos Moles , Neoplasias Ósseas/diagnóstico por imagem , Condroblastoma/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Organização Mundial da SaúdeRESUMO
Osteosarcoma is the most common primary malignant bone tumour in children and adolescents. More than a third of patients do not respond to standard therapy and urgently require alternative treatment options. Due to a high degree of inter- and intra-tumoural genomic heterogeneity and complexity, recurrent molecular alterations that could serve as prognostic predictors or therapeutic targets are still lacking in osteosarcoma. Copy number (CN) gains involving the IGF1R gene, however, have been suggested as a potential surrogate marker for treating a subset of patients with IGF1R inhibitors. In this study, we screened a large set of osteosarcomas and found specific CN gains of the IGF1R gene in 18 of 253 (7.1%) cases with corresponding IGF1R overexpression. Despite the discouraging results observed in clinical trials in other tumours so far, focusing only on selected patients with osteosarcoma that show evidence of IGF pathway activation might represent a promising new and innovative treatment approach.
Assuntos
Neoplasias Ósseas/patologia , Osteossarcoma/patologia , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Adolescente , Adulto , Neoplasias Ósseas/tratamento farmacológico , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteossarcoma/tratamento farmacológico , Receptor IGF Tipo 1/genética , Adulto JovemRESUMO
Neurotrophic tyrosine receptor kinase (NTRK) fusions are promising molecular targets that have been described in a broad range of malignant tumours. Fusions commonly lead to the expression of chimeric proteins with constitutive tyrosine kinase activation that drives tumorigenesis. Despite a low prevalence among most solid tumours (<1%), the first encouraging results with pan-NTRK tyrosine kinase inhibitors (TKIs) such as larotrectinib or entrectinib stimulated the search for eligible patients. Here, we report the first three cases of osteosarcoma harbouring NTRK fusions, among 113 patients sequenced. It is also the first report on NTRK fusions within a tumour type characterised by highly rearranged genomes and abundant passenger mutations. Whereas the presence of NTRK gene fusions in many tumours is considered to be one of the main driver events for tumour progression, the three chimeric transcripts described here appear non-functional and likely represent randomly occurring passenger alterations. Particularly in tumours with complex karyotypes, it may therefore be advisable to specifically investigate the fusion transcripts for functional impact before considering targeted treatment approaches using pan-NTRK TKIs.