Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 820: 153118, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35041947

RESUMO

The application of phosphorus (P) fertilizers inevitably contributes to the accumulation of trace elements, such as uranium (U), in agricultural soils. The fertilizer-derived U accumulation was first reported in Rothamsted Research in 1979. In the present study, we expand this early key research by evaluating the fertilizer-derived U accumulation in topsoil (0-23 cm) from 1876 to the 2010s. We found that total U accumulation rates ranged from 2.8 to 6.1 µg U kg-1 yr-1 at the Broadbalk and Park Grass, respectively, being similar to those observed 40 years ago. This highlights that U accumulation is still an ongoing process in Rothamsted. Fortunately, the proportion of fertilizer-derived U did not significantly increase in the ammonium acetate extractable ('proxy' of plant-available) fraction over 130 years. In addition, we compiled an overview of the global rate of mineral P fertilizer-derived U accumulation in agricultural systems using existing literature (36 experimental trials, from 11 countries). The resulting dataset predicts an estimated mean U accumulation of 0.85 µg U kg-1 soil for an annual application of 1 kg P ha-1 in the topsoil of agricultural systems (0.26 µg U kg-1 per kg P ha-1 for arable land and 1.34 µg U kg-1 per kg P ha-1 for grassland). The annual U accumulation per applied kg P ha-1 being 0.08 (Broadbalk) and 0.17 µg U (Park Grass) corresponds to around one-third and one-eighth of the worldwide mean U accumulation for their respective agricultural systems, suggesting 'relatively' low U contents of the applied P fertilizers. Our study underscores that fertilizer-derived U accumulation is a persistent problem on the global scale, even if at different rates, and therewith suggests an evaluation of current regulatory limits and acceptable U input levels from P fertilization.


Assuntos
Poluentes do Solo , Urânio , Agricultura/métodos , Fertilizantes/análise , Fósforo , Solo , Poluentes do Solo/análise , Urânio/análise
2.
Nat Commun ; 11(1): 5427, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110065

RESUMO

Sustainable soil carbon sequestration practices need to be rapidly scaled up and implemented to contribute to climate change mitigation. We highlight that the major potential for carbon sequestration is in cropland soils, especially those with large yield gaps and/or large historic soil organic carbon losses. The implementation of soil carbon sequestration measures requires a diverse set of options, each adapted to local soil conditions and management opportunities, and accounting for site-specific trade-offs. We propose the establishment of a soil information system containing localised information on soil group, degradation status, crop yield gap, and the associated carbon-sequestration potentials, as well as the provision of incentives and policies to translate management options into region- and soil-specific practices.

3.
Sci Total Environ ; 717: 134638, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31837854

RESUMO

Biogeochemical changes of whole catchments may, at least in part, be deduced from changes in stream water composition. We hypothesized that there are seasonal variations of natural nanoparticles (NNP; 1-100 nm) and fine colloids (<300 nm) in stream water, which differ in origin depending on catchment inflow parameters. To test this hypothesis, we assessed the annual dynamics of the elemental composition of NNP and fine colloids in multiple water compartments, namely in stream water, above and below canopy precipitation, groundwater and lateral subsurface flow from the Conventwald catchment, Germany. In doing so, we monitored meteorological and hydrological parameters, total element loads, and analyzed element concentrations of org C, Al, Si, P, Ca, Mn and Fe by Asymmetric Flow Field Flow Fractionation (AF4). The results showed that colloid element concentrations were < 5 µmol/L. Up to an average of 55% (Fe) of total element concentrations were not truly dissolved but bound to NNP and fine colloids. The colloid patterns showed seasonal variability with highest loads in winter. The presence of groundwater-derived colloidal Ca in stream water showed that groundwater mainly fed the streams throughout the whole year. Overall, the results showed that different water compartments vary in the NNP and fine colloidal composition making them a suitable tool to identify the streams NNP and fine colloid sources. Given the completeness of the dataset with respect to NNP and fine colloids in multiple water compartments of a single forest watershed this study adds to the hitherto underexplored role of NNP and fine colloids in natural forest watersheds.

4.
Environ Int ; 127: 442-451, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959309

RESUMO

BACKGROUND: Salinity intrusion into coastal regions is an increasing threat to agricultural production of salt sensitive crops like paddy rice. In the coastal Mekong Delta, farmers respond by shifting to more salinity tolerant agricultural production systems such as alternating rice-shrimp and permanent shrimp. While shrimps are sensitive to pesticide residues used on rice, the use of antibiotics in shrimp farming can cause contamination in rice crops. These patterns of cross-contamination are not well documented empirically in the rapidly changing agricultural landscape. OBJECTIVE AND METHODS: Our objective was to understand changing pollution patterns induced by shifts in agricultural land use system. We addressed this by i) documenting pesticide and antibiotic use in three different agriculture land use systems (permanent rice, alternating rice-shrimp and permanent shrimp), and by ii) determining residues of pesticides and antibiotics in top soil layers of these three land use systems. Samples were taken in Sóc Trang and Ben Tre province in the Mekong Delta, Vietnam. Chemical analyses comprised 12 of the most commonly used pesticides in rice paddies and six common antibiotics used in shrimp production. RESULTS: Results showed that residues of pesticides were present in all agricultural land use systems, including shrimp aquaculture. Active ingredients were mostly fungicides with a maximum concentration of 67 µg kg-1 found for isoprothiolane in permanent rice systems, followed by alternating rice-shrimp and permanent shrimp systems. Furthermore, antibiotics were present ubiquitously, with fluoroquinolones accumulating to larger amounts than sulfonamides and diaminopyrimidines. All concentrations were below critical lethal threshold values. CONCLUSION: Overall, farmers were most conscious of agrochemical use in alternating rice-shrimp systems to prevent harm to shrimps, which was reflected in overall lower concentrations of agrochemicals when compared to rice systems. Thus, alternating rice-shrimp systems present a low risk option in terms of food safety, which may bring additional benefits to this so far rather low-input system in brackish water transition zone.


Assuntos
Antibacterianos/análise , Crustáceos/química , Oryza/química , Resíduos de Praguicidas/análise , Agricultura , Animais , Aquicultura , Produtos Agrícolas , Poluição Ambiental/análise , Alimentos Marinhos/análise , Vietnã
5.
Environ Pollut ; 243(Pt B): 890-899, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30245451

RESUMO

The Red River Delta is a major agricultural production area of Vietnam with year-round use of pesticides for paddy rice cultivation and other production systems. The delta is protected from flooding, storm surges and saline water intrusion by a sophisticated river and sea-dyke system. Little is known about the effects of such a dyke system on pesticide pollution in the enclosed landscape. Our aim was to address this gap by i) determining pesticide prevalence in soils and sediments within a dyked agricultural area, and by ii) assessing whether and to which degree this dyke system might affect the spatial distribution of pesticides. After sampling paddy rice fields (topsoil) and irrigation ditches (sediment) perpendicular to the dyke in Giao Thuy district, we analysed 12 of the most commonly used pesticides in this area. In soils, we detected most frequently isoprothiolane (100% detection frequency), chlorpyrifos (85%) and propiconazole (41%) while in sediments isoprothiolane (71%) and propiconazole (71%) were most frequently found. Maximum concentrations reached 42.6 µg isoprotiolane kg-1 in soil, and 35.1 µg azoxystrobin kg-1 in sediment. Our results supported the assumption that the dyke system influenced residue distribution of selected pesticides. More polar substances increasingly accumulated in fields closer to the sea-dyke (R2 = 0.92 for chlorpyrifos and 0.51 for isoprothiolane). We can thus support initiatives from local authorities to use the distance to dykes as a mean for deliniating zones of different environmental pollution; yet, the degree at which dykes influence pesticide accumulation appear to be compound specific.


Assuntos
Agricultura , Monitoramento Ambiental , Praguicidas/análise , Poluentes do Solo/análise , Clorpirifos , Poluição Ambiental , Inundações , Oryza , Pirimidinas , Rios , Solo , Manejo de Espécimes , Estrobilurinas , Tiofenos , Triazóis , Vietnã , Poluentes Químicos da Água
6.
Chemosphere ; 193: 1198-1206, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29874749

RESUMO

Antibiotic resistance genes in soil pose a potential risk for human health. They can enter the soil by irrigation with untreated or insufficiently treated waste water. We hypothesized that water flow paths trigger the formation of antibiotic resistance, since they transport antibiotics, multi-resistant bacteria and free resistance genes through the soil. To test this, we irrigated soil cores once or twice with waste water only, or with waste water added with sulfamethoxazole (SMX) and ciprofloxacin (CIP). The treatments also contained a dye to stain the water flow paths and allowed to sample these separately from unstained bulk soil. The fate of SMX and CIP was assessed by sorption experiments, leachate analyses and the quantification of total and extractable SMX and CIP in soil. The abundance of resistance genes to SMX (sul1 and sul2) and to CIP (qnrB and qnrS) was quantified by qPCR. The sorption of CIP was larger than the dye and SMX. Ciprofloxacin accumulated exclusively in the water flow paths but the resistance genes qnrB and qnrS were not detectable. The SMX concentration in the water flow paths doubled the concentration of the bulk soil, as did the abundance of sul genes, particularly sul1 gene. These results suggest that flow paths do function as hotspots for the accumulation of antibiotics and trigger the formation of resistance genes in soil. Their dissemination also depends on the mobility of the antibiotic, which was much larger for SMX than for CIP.


Assuntos
Resistência Microbiana a Medicamentos/fisiologia , Solo/química , Águas Residuárias/química , Humanos , Águas Residuárias/análise
7.
Environ Sci Pollut Res Int ; 22(12): 9042-58, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25572267

RESUMO

Pollution of drinking water sources with agrochemicals is often a major threat to human and ecosystem health in some river deltas, where agricultural production must meet the requirements of national food security or export aspirations. This study was performed to survey the use of different drinking water sources and their pollution with pesticides in order to inform on potential exposure sources to pesticides in rural areas of the Mekong River delta, Vietnam. The field work comprised both household surveys and monitoring of 15 frequently used pesticide active ingredients in different water sources used for drinking (surface water, groundwater, water at public pumping stations, surface water chemically treated at household level, harvested rainwater, and bottled water). Our research also considered the surrounding land use systems as well as the cropping seasons. Improper pesticide storage and waste disposal as well as inadequate personal protection during pesticide handling and application were widespread amongst the interviewed households, with little overall risk awareness for human and environmental health. The results show that despite the local differences in the amount and frequency of pesticides applied, pesticide pollution was ubiquitous. Isoprothiolane (max. concentration 8.49 µg L(-1)), fenobucarb (max. 2.32 µg L(-1)), and fipronil (max. 0.41 µg L(-1)) were detected in almost all analyzed water samples (98 % of all surface samples contained isoprothiolane, for instance). Other pesticides quantified comprised butachlor, pretilachlor, propiconazole, hexaconazole, difenoconazole, cypermethrin, fenoxapro-p-ethyl, tebuconazole, trifloxystrobin, azoxystrobin, quinalphos, and thiamethoxam. Among the studied water sources, concentrations were highest in canal waters. Pesticide concentrations varied with cropping season but did not diminish through the year. Even in harvested rainwater or purchased bottled water, up to 12 different pesticides were detected at concentrations exceeding the European Commission's parametric guideline values for individual or total pesticides in drinking water (0.1 and 0.5 µg L(-1); respectively). The highest total pesticide concentration quantified in bottled water samples was 1.38 µg L(-1). Overall, we failed to identify a clean water source in the Mekong Delta with respect to pesticide pollution. It is therefore urgent to understand further and address drinking water-related health risk issues in the region.


Assuntos
Água Potável/análise , Monitoramento Ambiental , Água Subterrânea/análise , Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Agricultura , Humanos , Estações do Ano , Vietnã
8.
Glob Chang Biol ; 20(6): 1968-78, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24227744

RESUMO

Rice straw burning has accompanied paddy management for millennia, introducing black carbon (BC) into soil as the residue of incomplete combustion. This study examined the contribution of BC to soil organic matter and the rate at which it accumulates in paddy soils as a result of prolonged paddy management. Soil depth profiles were sampled along a chronosequence of 0-2000 years of rice-wheat rotation systems and adjacent non-paddy systems (50-700 years) in the Bay of Hangzhou (Zhejiang province, China). The soil BC content and its degree of condensation were assessed using benzene-polycarboxylic acids (BPCAs) as geochemical markers. The results showed that despite regular long term BC input, BC only contributed 7-11% of total soil organic carbon (SOC) in the topsoil horizons. Nevertheless, along with SOC, paddy soils accumulated BC with increasing duration of management until 297 years to reach a steady-state of 13 t BC ha(-1). This was 1.8 times more than in non-paddy soils. The fate of BC in paddy soils (0-1 m) could be modeled revealing an average annual input of 44 kg ha(-1) yr(-1), and a mean residence time of 303 years. The subsoils contributed at least 50% to overall BC stocks, which likely derived from periods prior to land embankment and episodic burial of ancient topsoil, as also indicated by BPCA pattern changes. We conclude that there is a significant but limited accumulation of C in charred forms upon prolonged paddy management. The final contribution of BC to total SOC in paddy soils was similar to that in other aerobic ecosystems of the world.


Assuntos
Agricultura , Monitoramento Ambiental , Sedimentos Geológicos/análise , Solo/química , Fuligem/análise , Isótopos de Carbono/análise , China , Incêndios , Oryza/química , Estações do Ano
9.
Chemosphere ; 91(6): 725-32, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23498059

RESUMO

The sorption of perfluorinated compounds (PFCs) to soils and sediments determines their fate and distribution in the environment, but there is little consensus regarding distribution coefficients that should be used for assessing the environmental fate of these compounds. Here we reviewed sorption coefficients for PFCs derived from laboratory experiments and compared these values with the gross distribution between the concentrations of PFCs in surface waters and sediments or between wastewater and sewage sludge. Sorption experiments with perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) suggest that their sorption can be described reasonably well as a partitioning-like process with an average log K(oc) of approximately 2.8 for PFOA and 3.0 for PFOS. However, median concentrations in sediments (PFOA, 0.27 ng g(-1); PFOS, 0.54 ng g(-1)) or sewage sludge (PFOA, 37 ng g(-1); PFOS, 69 ng g(-1)) in relation to median concentrations in surface water (PFOA, 3ngl(-1); PFOS, 3ngl(-1)) or wastewater treatment effluent (PFOA, 24 ng l(-1); PFOS, 11 ng l(-1)), suggest that effective log K(oc) distribution coefficients for the field situation may be close to 3.7 for PFOA and 4.2 for PFOS. Applying lab-based log K(oc) distribution coefficients can therefore result in a serious overestimation of PFC concentrations in water and in turn to an underestimation of the residence time of PFOA and PFOS in contaminated soils. Irrespective of the dissipation kinetics, the majority of PFOA and PFOS from contaminated soils will be transported to groundwater and surface water bodies.


Assuntos
Ácidos Alcanossulfônicos/análise , Caprilatos/análise , Poluentes Ambientais/análise , Fluorocarbonos/análise , Sedimentos Geológicos/química , Solo/química , Águas Residuárias/química , Água/química , Animais , Humanos
10.
Environ Sci Technol ; 43(6): 1824-30, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19368178

RESUMO

It is not the total but the (bio)accessible concentration of veterinary medicines that determines their toxicity in the environment. We elucidate the changes in (bio)accessibility of manure-applied sulfadiazine (SDZ) with increasing contact time in soil. Fattening pigs were medicated with 14C-labeled SDZ, and the contaminated manure (fresh and aged) was amended to 2 soil types (Cambisol, Luvisol) and incubated for 218 days at 10 degrees C in the dark. Antibiotic residues of different bioaccessibility were approached by sequential extractions with 0.01 M CaCl2 (CaCl2 fraction), methanol (MeOH fraction), and finally acetonitrile/water (residual fraction, microwave extraction at 150 degrees C). In each fraction, total radioactivity, SDZ, and its major metabolites were quantified. The results showed that both SDZ and,to a lesser extent 4-hydroxysulfadiazine (4-OH-SDZ) were rapidly reformed from N-acetylsulfadiazine (N-ac-SDZ) during the first 2-4 weeks after fresh manure application, i.e., the N-acetylated metabolite does not sequester in soil to a significant extent Yet, the water and methanol extractable SDZ and 4-OH-SDZ also dissipated rapidly (DT50 = 6.0-32 days) for the fresh manure treatment with similar rate constants for both soil types. In the residual fractions, however, the concentrations of both compounds increased with time. We conclude that the residual fraction comprises the sequestered pool of SDZ and its hydroxylated metabolite. There they are entrapped and may persist in soil for several years. Including the residual fraction into fate studies thus yields dissipation half-lives of SDZ which exceed those previously reported for sulfonamides by a factor of about 100.


Assuntos
Resíduos de Drogas/química , Esterco , Poluentes do Solo/química , Sulfadiazina/química , Animais , Solo/análise , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA