Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Metab ; : 102007, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134303

RESUMO

Carotenoids are lipophilic plant molecules with antioxidant properties. Some carotenoids such as ß-carotene also serve as vitamin A precursors, playing a key role in human health. Carotenoids are transported in lipoproteins with other lipids such as cholesterol, however, the mechanisms responsible for carotenoid storage in tissues and their non-enzymatic elimination remain relatively unexplored. Using mouse models, we examined the contribution of the low-density lipoprotein receptor (LDLR) in the bodily distribution and disposal of carotenoids. Our results show that LDLR plays a dual role in carotenoid homeostasis by simultaneously favoring carotenoid storage in the liver and adipose tissue while facilitating their fecal elimination, which accounts for a previously unrecognized disposal pathway for these important bioactive molecules.

2.
Am J Physiol Endocrinol Metab ; 327(3): E258-E270, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39017681

RESUMO

Perinatal nutrition exerts a profound influence on adult metabolic health. This study aimed to investigate whether increased maternal vitamin A (VA) supply can lead to beneficial metabolic phenotypes in the offspring. The researchers utilized mice deficient in the intestine-specific homeobox (ISX) transcription factor, which exhibits increased intestinal VA retinoid production from dietary ß-carotene (BC). ISX-deficient dams were fed a VA-sufficient or a BC-enriched diet during the last week of gestation and the whole lactation period. Total retinol levels in milk and weanling livers were 2- to 2.5-fold higher in the offspring of BC-fed dams (BC offspring), indicating increased VA supplies during late gestation and lactation. The corresponding VA-sufficient and BC offspring (males and females) were compared at weaning and adulthood after being fed either a standard or high-fat diet (HFD) with regular VA content for 13 weeks from weaning. HFD-induced increases in adiposity metrics, such as fat depot mass and adipocyte diameter, were more pronounced in males than females and were attenuated or suppressed in the BC offspring. Notably, the BC offspring were protected from HFD-induced increases in circulating triacylglycerol levels and hepatic steatosis. These protective effects were associated with reduced food efficiency, enhanced capacity for thermogenesis and mitochondrial oxidative metabolism in adipose tissues, and increased adipocyte hyperplasia rather than hypertrophy in the BC offspring. In conclusion, maternal VA nutrition influenced by genetics may confer metabolic benefits to the offspring, with mild increases in late gestation and lactation protecting against obesity and metabolic dysregulation in adulthood.NEW & NOTEWORTHY A genetic mouse model, deficient in intestine-specific homeobox (ISX) transcription factor, is used to show that a mildly increased maternal vitamin A supply from ß-carotene feeding during late gestation and lactation programs energy and lipid metabolism in tissues and protects the offspring from diet-induced hypertrophic obesity and hepatic steatosis. This knowledge may have implications for human populations where polymorphisms in ISX and ISX target genes involved in vitamin A homeostasis are prevalent.


Assuntos
Dieta Hiperlipídica , Homeostase , Obesidade , Vitamina A , Animais , Feminino , Camundongos , Vitamina A/metabolismo , Masculino , Gravidez , Obesidade/metabolismo , Obesidade/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , beta Caroteno/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Camundongos Endogâmicos C57BL , Lactação , Camundongos Knockout , Herança Materna , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Dieta , Fígado/metabolismo , Adiposidade/genética
3.
Elife ; 122024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319073

RESUMO

ß-Carotene oxygenase 1 (BCO1) catalyzes the cleavage of ß-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary ß-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that ß-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of ß-carotene on atherosclerosis resolution. To explore the direct implication of dietary ß-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that ß-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of ß-carotene on atherosclerosis resolution. Our data highlight the potential of ß-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , beta Caroteno , Camundongos , Humanos , Animais , beta Caroteno/farmacologia , beta Caroteno/metabolismo , Vitamina A/metabolismo , Fígado/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Lipídeos
4.
J Lipid Res ; 65(3): 100507, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38272355

RESUMO

Finasteride is commonly prescribed to treat benign prostate hyperplasia and male-pattern baldness in cis men and, more recently, trans individuals. However, the effect of finasteride on cardiovascular disease remains elusive. We evaluated the role of finasteride on atherosclerosis using low-density lipoprotein (LDL) receptor-deficient (Ldlr-/-) mice. Next, we examined the relevance to humans by analyzing the data deposited between 2009 and 2016 in the National Health and Nutrition Examination Survey. We show that finasteride reduces total plasma cholesterol and delays the development of atherosclerosis in Ldlr-/- mice. Finasteride reduced monocytosis, monocyte recruitment to the lesion, macrophage lesion content, and necrotic core area, the latter of which is an indicator of plaque vulnerability in humans. RNA sequencing analysis revealed a downregulation of inflammatory pathways and an upregulation of bile acid metabolism, oxidative phosphorylation, and cholesterol pathways in the liver of mice taking finasteride. Men reporting the use of finasteride showed lower plasma levels of cholesterol and LDL-cholesterol than those not taking the drug. Our data unveil finasteride as a potential treatment to delay cardiovascular disease in people by improving the plasma lipid profile.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Masculino , Animais , Camundongos , Finasterida/farmacologia , Finasterida/uso terapêutico , Inquéritos Nutricionais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Receptores de LDL/genética , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA