Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
WIREs Mech Dis ; 16(1): e1632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37833830

RESUMO

Neural circuits in the brain, primarily in the hypothalamus, are paramount to the homeostatic control of feeding and energy utilization. They integrate hunger, satiety, and body adiposity cues from the periphery and mediate the appropriate behavioral and physiological responses to satisfy the energy demands of the animal. Notably, perturbations in central homeostatic circuits have been linked to the etiology of excessive feeding and obesity. Considering the ever-changing energy requirements of the animal and required adaptations, it is not surprising that brain-feeding circuits remain plastic in adulthood and are subject to changes in synaptic strength as a consequence of nutritional status. Indeed, synapse density, probability of presynaptic transmitter release, and postsynaptic responses in hypothalamic energy balance centers are tailored to behavioral and physiological responses required to sustain survival. Mounting evidence supports key roles of astrocytes facilitating some of this plasticity. Here we discuss these synaptic plasticity mechanisms and the emerging roles of astrocytes influencing energy and glucose balance control in health and disease. This article is categorized under: Cancer > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.


Assuntos
Astrócitos , Hipotálamo , Animais , Astrócitos/metabolismo , Hipotálamo/metabolismo , Plasticidade Neuronal/fisiologia , Sistema Nervoso Central/metabolismo , Sinapses/metabolismo , Obesidade/metabolismo
2.
J Neurosci ; 43(33): 5918-5935, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37507231

RESUMO

The ventromedial hypothalamus (VMH) is a functionally heterogeneous nucleus critical for systemic energy, glucose, and lipid balance. We showed previously that the metabotropic glutamate receptor 5 (mGluR5) plays essential roles regulating excitatory and inhibitory transmission in SF1+ neurons of the VMH and facilitating glucose and lipid homeostasis in female mice. Although mGluR5 is also highly expressed in VMH astrocytes in the mature brain, its role there influencing central metabolic circuits is unknown. In contrast to the glucose intolerance observed only in female mice lacking mGluR5 in VMH SF1 neurons, selective depletion of mGluR5 in VMH astrocytes enhanced glucose tolerance without affecting food intake or body weight in both adult female and male mice. The improved glucose tolerance was associated with elevated glucose-stimulated insulin release. Astrocytic mGluR5 male and female mutants also exhibited reduced adipocyte size and increased sympathetic tone in gonadal white adipose tissue. Diminished excitatory drive and synaptic inputs onto VMH Pituitary adenylate cyclase-activating polypeptide (PACAP+) neurons and reduced activity of these cells during acute hyperglycemia underlie the observed changes in glycemic control. These studies reveal an essential role of astrocytic mGluR5 in the VMH regulating the excitatory drive onto PACAP+ neurons and activity of these cells facilitating glucose homeostasis in male and female mice.SIGNIFICANCE STATEMENT Neuronal circuits within the VMH play chief roles in the regulation of whole-body metabolic homeostasis. It remains unclear how astrocytes influence neurotransmission in this region to facilitate energy and glucose balance control. Here, we explored the role of the metabotropic glutamate receptor, mGluR5, using a mouse model with selective depletion of mGluR5 from VMH astrocytes. We show that astrocytic mGluR5 critically regulates the excitatory drive and activity of PACAP-expressing neurons in the VMH to control glucose homeostasis in both female and male mice. Furthermore, mGluR5 in VMH astrocytes influences adipocyte size and sympathetic tone in white adipose tissue. These studies provide novel insight toward the importance of hypothalamic astrocytes participating in central circuits regulating peripheral metabolism.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptor de Glutamato Metabotrópico 5 , Animais , Feminino , Masculino , Astrócitos/metabolismo , Glucose/metabolismo , Homeostase , Hipotálamo/metabolismo , Lipídeos , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Camundongos
3.
Nat Metab ; 4(5): 627-643, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35501599

RESUMO

Brain-derived neurotrophic factor (BDNF) is essential for maintaining energy and glucose balance within the central nervous system. Because the study of its metabolic actions has been limited to effects in neuronal cells, its role in other cell types within the brain remains poorly understood. Here we show that astrocytic BDNF signaling within the ventromedial hypothalamus (VMH) modulates neuronal activity in response to changes in energy status. This occurs via the truncated TrkB.T1 receptor. Accordingly, either fasting or central BDNF depletion enhances astrocytic synaptic glutamate clearance, thereby decreasing neuronal activity in mice. Notably, selective depletion of TrkB.T1 in VMH astrocytes blunts the effects of energy status on excitatory transmission, as well as on responses to leptin, glucose and lipids. These effects are driven by increased astrocytic invasion of excitatory synapses, enhanced glutamate reuptake and decreased neuronal activity. We thus identify BDNF/TrkB.T1 signaling in VMH astrocytes as an essential mechanism that participates in energy and glucose homeostasis.


Assuntos
Astrócitos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Animais , Astrócitos/metabolismo , Glucose/metabolismo , Glutamatos/metabolismo , Homeostase , Hipotálamo/metabolismo , Camundongos
4.
Proc Natl Acad Sci U S A ; 117(32): 19566-19577, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719118

RESUMO

The ventromedial hypothalamus (VMH) plays chief roles regulating energy and glucose homeostasis and is sexually dimorphic. We discovered that expression of metabotropic glutamate receptor subtype 5 (mGluR5) in the VMH is regulated by caloric status in normal mice and reduced in brain-derived neurotrophic factor (BDNF) mutants, which are severely obese and have diminished glucose balance control. These findings led us to investigate whether mGluR5 might act downstream of BDNF to critically regulate VMH neuronal activity and metabolic function. We found that mGluR5 depletion in VMH SF1 neurons did not affect energy balance regulation. However, it significantly impaired insulin sensitivity, glycemic control, lipid metabolism, and sympathetic output in females but not in males. These sex-specific deficits are linked to reductions in intrinsic excitability and firing rate of SF1 neurons. Abnormal excitatory and inhibitory synapse assembly and elevated expression of the GABAergic synthetic enzyme GAD67 also cooperate to decrease and potentiate the synaptic excitatory and inhibitory tone onto mutant SF1 neurons, respectively. Notably, these alterations arise from disrupted functional interactions of mGluR5 with estrogen receptors that switch the normally positive effects of estrogen on SF1 neuronal activity and glucose balance control to paradoxical and detrimental. The collective data inform an essential central mechanism regulating metabolic function in females and underlying the protective effects of estrogen against metabolic disease.


Assuntos
Glicemia/metabolismo , Estrogênios/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Núcleo Hipotalâmico Ventromedial/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Metabolismo Energético , Feminino , Glutamato Descarboxilase/metabolismo , Homeostase , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Mutantes , Rede Nervosa , Inibição Neural , Neurônios/metabolismo , Neurônios/fisiologia , Receptor de Glutamato Metabotrópico 5/genética , Receptores de Estrogênio/metabolismo , Fatores Sexuais , Transdução de Sinais , Fator Esteroidogênico 1/metabolismo , Sistema Nervoso Simpático/metabolismo , Transmissão Sináptica , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/metabolismo
5.
Endocrinology ; 161(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32337532

RESUMO

The thrombospondin receptor alpha2delta-1 (α2δ-1) plays essential roles promoting the activity of SF1 neurons in the ventromedial hypothalamus (VMH) and mediating glucose and lipid metabolism in male mice. Its role in the VMH of female mice remains to be defined, especially considering that this hypothalamic region is sexually dimorphic. We found that α2δ-1 depletion in SF1 neurons differentially affects glucose and lipid balance control and sympathetic tone in females compared to males. Mutant females show a modest increase in relative body weight gain when fed a high-fat diet (HFD) and normal energy expenditure, indicating that α2δ-1 is not a critical regulator of energy balance in females, similar to males. However, diminished α2δ-1 function in the VMH leads to enhanced glycemic control in females fed a chow diet, in contrast to the glucose intolerance reported previously in mutant males. Interestingly, the effects of α2δ-1 on glucose balance in females are influenced by diet. Accordingly, females but not males lacking α2δ-1 exhibit diminished glycemic control as well as susceptibility to hepatic steatosis when fed a HFD. Increased hepatic sympathetic tone and CD36 mRNA expression and reduced adiponectin levels underlie these diet-induced metabolic alterations in mutant females. The results indicate that α2δ-1 in VMH SF1 neurons critically regulates metabolic function through sexually dimorphic mechanisms. These findings are clinically relevant since metabolic alterations have been reported as a side effect in human patients prescribed gabapentinoid drugs, known to inhibit α2δ-1 function, for the treatment of seizure disorders, neuropathic pain, and anxiety disorders.


Assuntos
Glicemia , Canais de Cálcio/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , Núcleo Hipotalâmico Ventromedial/metabolismo , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético , Fígado Gorduroso/etiologia , Feminino , Gabapentina/efeitos adversos , Intolerância à Glucose/etiologia , Controle Glicêmico , Masculino , Camundongos , Caracteres Sexuais
6.
Cell Rep ; 21(10): 2737-2747, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29212022

RESUMO

The central mechanisms controlling glucose and lipid homeostasis are inadequately understood. We show that α2δ-1 is an essential regulator of glucose and lipid balance, acting in steroidogenic factor-1 (SF1) neurons of the ventromedial hypothalamus (VMH). These effects are body weight independent and involve regulation of SF1+ neuronal activity and sympathetic output to metabolic tissues. Accordingly, mice with α2δ-1 deletion in SF1 neurons exhibit glucose intolerance, altered lipolysis, and decreased cholesterol content in adipose tissue despite normal energy balance regulation. Profound reductions in the firing rate of SF1 neurons, decreased sympathetic output, and elevated circulating levels of serotonin are associated with these alterations. Normal calcium currents but reduced excitatory postsynaptic currents in mutant SF1 neurons implicate α2δ-1 in the promotion of excitatory synaptogenesis separate from its canonical role as a calcium channel subunit. Collectively, these findings identify an essential mechanism that regulates VMH neuronal activity and glycemic and lipid control and may be a target for tackling metabolic disease.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Glucose/metabolismo , Neurônios/metabolismo , Núcleos Ventrais do Tálamo/citologia , Animais , Western Blotting , Canais de Cálcio Tipo L/genética , Eletrofisiologia , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Imunofluorescência , Homeostase , Lipídeos , Camundongos , Fatores de Processamento de RNA/metabolismo
7.
PLoS Biol ; 15(6): e2001408, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28636612

RESUMO

Myelin is required for proper nervous system function. Schwann cells in developing nerves depend on extrinsic signals from the axon and from the extracellular matrix to first sort and ensheathe a single axon and then myelinate it. Neuregulin 1 type III (Nrg1III) and laminin α2ß1γ1 (Lm211) are the key axonal and matrix signals, respectively, but how their signaling is integrated and if each molecule controls both axonal sorting and myelination is unclear. Here, we use a series of epistasis experiments to show that Lm211 modulates neuregulin signaling to ensure the correct timing and amount of myelination. Lm211 can inhibit Nrg1III by limiting protein kinase A (PKA) activation, which is required to initiate myelination. We provide evidence that excessive PKA activation amplifies promyelinating signals downstream of neuregulin, including direct activation of the neuregulin receptor ErbB2 and its effector Grb2-Associated Binder-1 (Gab1), thereby elevating the expression of the key transcription factors Oct6 and early growth response protein 2 (Egr2). The inhibitory effect of Lm211 is seen only in fibers of small caliber. These data may explain why hereditary neuropathies associated with decreased laminin function are characterized by focally thick and redundant myelin.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Laminina/metabolismo , Bainha de Mielina/metabolismo , Neuregulina-1/metabolismo , Células de Schwann/metabolismo , Animais , Axônios/metabolismo , Western Blotting , Células Cultivadas , Laminina/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Modelos Neurológicos , Neuregulina-1/genética , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nervo Isquiático/citologia , Nervo Isquiático/metabolismo , Nervo Isquiático/ultraestrutura
8.
Nat Neurosci ; 19(7): 879-87, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27273766

RESUMO

Myelination is essential for nervous system function. Schwann cells interact with neurons and the basal lamina to myelinate axons using known receptors, signals and transcription factors. In contrast, the transcriptional control of axonal sorting and the role of mechanotransduction in myelination are largely unknown. Yap and Taz are effectors of the Hippo pathway that integrate chemical and mechanical signals in cells. We describe a previously unknown role for the Hippo pathway in myelination. Using conditional mutagenesis in mice, we show that Taz is required in Schwann cells for radial sorting and myelination and that Yap is redundant with Taz. Yap and Taz are activated in Schwann cells by mechanical stimuli and regulate Schwann cell proliferation and transcription of basal lamina receptor genes, both necessary for radial sorting of axons and subsequent myelination. These data link transcriptional effectors of the Hippo pathway and of mechanotransduction to myelin formation in Schwann cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Bainha de Mielina/metabolismo , Fosfoproteínas/metabolismo , Células de Schwann/metabolismo , Fatores de Transcrição/metabolismo , Aciltransferases , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Proteínas de Ciclo Celular , Células Cultivadas , Mecanotransdução Celular/fisiologia , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Receptores de Laminina/metabolismo , Células de Schwann/citologia , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA