Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(9): 5687-5722, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816069

RESUMO

The increasing concentration of carbon dioxide (CO2) in the atmosphere has compelled researchers and policymakers to seek urgent solutions to address the current global climate change challenges. In order to keep the global mean temperature at approximately 1.5 °C above the preindustrial era, the world needs increased deployment of negative emission technologies. Among all the negative emissions technologies reported, direct air capture (DAC) is positioned to deliver the needed CO2 removal in the atmosphere. DAC technology is independent of the emissions origin, and the capture machine can be located close to the storage or utilization sites or in a location where renewable energy is abundant or where the price of energy is low-cost. Notwithstanding these inherent qualities, DAC technology still has a few drawbacks that need to be addressed before the technology can be widely deployed. As a result, this review focuses on emerging trends in direct air capture (DAC) of CO2, the main drivers of DAC systems, and the required development for commercialization. The main findings point to undeniable facts that DAC's overall system energy requirement is high, and it is the main bottleneck in DAC commercialization.

2.
Foods ; 12(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36673322

RESUMO

Finding a balance between the capacity for production and the rising demand for food is the first step toward achieving food security. To achieve sustainable development on a national scale, decision-makers must use an energy, water, and food nexus approach that considers the relationships and interactions among these three resources as well as the synergies and trade-offs that result from the way they are handled. Therefore, this paper evaluates the Energy-Water-Food Nexus Profile of Qatar at a superstructural level by applying the Business-As-Usual (BAU) storyline; thus, trends of past data have been used to provide future projections to 2050 using the statistical prediction tools such as the compound annual growth rates of food demand (CAGRFD), international supply (CAGRFI), and the average local food supply change factor (c¯). Once the BAU storyline has been generated, the source-to-demand correlations have been defined for each food category. Such correlations include the annual and average ratios of the local food supply to the total demand (i.e., αi and α¯) and the ratios of the local food supply to the international supply (i.e., ßi and ߯). In addition, as an effort to identify the required action to reach food self-sustainability, the additional local food supply to achieve (xi,add) and its ratio to the local demand (γ) have been defined. The highest average ratio of the local food supply to the total demand (αi) was found for the meat category, which was estimated to be 48.3%. Finally, to evaluate the feasibility of attaining food self-sustainability in Qatar, the water consumption (Vw,i) and its corresponding required energy for each food category have been estimated.

3.
Molecules ; 27(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744975

RESUMO

Adsorption of carbon dioxide (CO2), as well as many other kinds of small molecules, is of importance for industrial and sensing applications. Metal-organic framework (MOF)-based adsorbents are spotlighted for such applications. An essential for MOF adsorbent application is a simple and easy fabrication process, preferably from a cheap, sustainable, and environmentally friendly ligand. Herein, we fabricated a novel structural, thermally stable MOF with fluorescence properties, namely Zn [5-oxo-2,3-dihydro-5H-[1,3]-thiazolo [3,2-a]pyridine-3,7-dicarboxylic acid (TPDCA)] • dimethylformamide (DMF) •0.25 H2O (coded as QUF-001 MOF), in solvothermal conditions by using zinc nitrate as a source of metal ion and TPDCA as a ligand easy accessible from citric acid and cysteine. Single crystal X-ray diffraction analysis and microscopic examination revealed the two-dimensional character of the formed MOF. Upon treatment of QUF-001 with organic solvents (such as methanol, isopropanol, chloroform, dimethylformamide, tetrahydrofuran, hexane), interactions were observed and changes in fluorescence maxima as well as in the powder diffraction patterns were noticed, indicating the inclusion and intercalation of the solvents into the interlamellar space of the crystal structure of QUF-001. Furthermore, CO2 and CH4 molecule sorption properties for QUF-001 reached up to 1.6 mmol/g and 8.1 mmol/g, respectively, at 298 K and a pressure of 50 bars.

4.
Environ Res ; 199: 111329, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34004171

RESUMO

As the world continues to grapple with the reality of coronavirus disease, global research communities are racing to develop practical solutions to adjust to the new challenges. One such challenge is the control of indoor air quality in the COVID-19 era and beyond. Since COVID-19 became a global pandemic, the "super spread" of the virus has continued to amaze policymakers despite measures put in place by public health officials to sensitize the general public on the need for social distancing, personal hygiene, etc. In this work, we have reviewed the literature to demonstrate, by investigating the historical and present circumstances, that indoor spread of infectious diseases may be assisted by the conditions of the HVAC systems. While little consideration has been given to the possibility of indoor airborne transmission of the virus, the available reports have demonstrated that the virus, with average aerodynamic diameter up to 80-120 nm, is viable as aerosol in indoor atmosphere for more than 3 h, and its spread may be assisted by the HVAC systems. Having reviewed the vulnerability of the conventional ventilation systems, we recommend innovative air circulation concept supported by the use of UVGI in combination with nanoporous air filter to combat the spread of SARS-CoV-2 and other harmful microbes in enclosed spaces.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Doenças Transmissíveis , Aerossóis , Humanos , Pandemias , SARS-CoV-2 , Ventilação
5.
Sci Rep ; 10(1): 8909, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483192

RESUMO

We report on the successful synthesis of diammonium magnesium dihydrogendiphosphate (V) dihydrate compound (NH4)2Mg(H2P2O7)2•2H2O using a wet chemical route. Single crystal X-ray diffraction analysis and micro Raman spectroscopy are employed to characterize the compound. We demonstrate, using a multidisciplinary approach, that this compound is ideal for carbon dioxide (CO2) capture in addition to other anthropogenic gasses. We show here -from both an experimental as well as from a density functional theory (DFT) calculations routes- the potential for adopting this compound into domestic air-conditioning units (ACUs). From these experiments, the resistance to bacterial growth is also investigated, which is critical for the adoption of this compound in ACUs. Our  compound exhibits a higher methane (CH4) sorptivity as compared to CO2 at 25 °C and 45 °C under pressures up to 50 bars. Furthermore, DFT electronic structure calculations are used to compute the main structural and electronic properties of the compound, taking into consideration the characteristics of the identified pores as a function of the progressive CO2 vs. CH4 loadings. Finally, the antibacterial assay reveals a strong antibacterial activity against the tested Gram-positive and Gram-negative bacteria, with a large zone of inhibition against the tested E. Coli, S. Aureus and K. Pneumonia.


Assuntos
Antibacterianos/síntese química , Difosfatos/síntese química , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Ar Condicionado/instrumentação , Antibacterianos/química , Antibacterianos/farmacologia , Dióxido de Carbono/química , Cristalografia por Raios X , Teoria da Densidade Funcional , Difosfatos/química , Difosfatos/farmacologia , Escherichia coli/efeitos dos fármacos , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Análise Espectral Raman , Staphylococcus aureus/efeitos dos fármacos , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA