Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38753047

RESUMO

Rhabdomyolysis is a pathological condition caused by muscle tissue degradation. In this condition, intracellular contents enter the bloodstream, and acute kidney injury (AKI) develops. Verbascoside (VB) is one of the most common phenylethanoid glycosides and has antioxidant and anti-inflammatory effects. This study investigated the effects of VB on AKI induced by rhabdomyolysis in rats. Male Wistar rats were divided into six groups (n = 6): (1) control group (normal saline), (2) 50% glycerol (10 ml/kg, IM, single injection, only on the first day), (3)-(5) 50% glycerol (same as group 2) + VB (30, 60, and 100 mg/kg, IP, 4 days), and (6) VB (100 mg/kg). Serum and kidney tissue samples were collected on day 5. Subsequently, serum creatinine (Cr), blood urea nitrogen (BUN), renal glutathione (GSH), malondialdehyde (MDA), lipocalin associated with neutrophil gelatinase (NGAL), tumor necrosis factor-alpha (TNF-α), and pathological changes were investigated. The injection of glycerol elevated levels of kidney damage markers, including Cr and BUN in serum, MDA, TNF-α, and NGAL, along with a reduction in GSH levels in the kidney tissue. The administration of VB (100 mg/kg) significantly lowered the levels of these markers, indicating the therapeutic effect of VB against AKI caused by rhabdomyolysis. Histopathological examinations revealed enhanced myoglobin cast formation and tubular necrosis in the glycerol group, which was reduced in rats that received VB, although this reduction did not reach statistical significance. VB can reduce rhabdomyolysis-induced AKI through its anti-inflammatory and antioxidant effects and decrease kidney damage severity.

2.
Iran J Basic Med Sci ; 27(5): 552-559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629092

RESUMO

Objectives: Rhabdomyolysis leads to the release of myoglobin, sarcoplasmic proteins, and electrolytes into the blood circulation causing acute kidney injury (AKI). Thymoquinone, a natural compound found in Nigella sativa seeds, has antioxidant and anti-inflammatory effects. This investigation assessed the renoprotective effect of thymoquinone on rhabdomyolysis-induced AKI in rats. Materials and Methods: Male Wistar rats were categorized into six groups (n = 6): 1. Control: (normal saline), 2. Glycerol (50 ml/kg, single dose, IM), 3-5: Glycerol + thymoquinone (1, 2.5 and 5 mg/kg, 4 days, IP), 6. Thymoquinone (5 mg/kg). On day 5, serum and kidney tissue were isolated and the amounts of serum creatinine and blood urea nitrogen (BUN), renal malondialdehyde (MDA), glutathione (GSH.), tumor necrosis factor-alpha (TNF-α), neutrophil gelatinase-associated lipocalin (NGAL), and pathological changes were evaluated. Results: Glycerol increased creatinine, BUN, MDA, TNF-α, and NGAL levels. It decreased GSH amounts and caused renal tubular necrosis, glomerular atrophy, and myoglobin cast in kidney tissue. Co-administration of glycerol and thymoquinone reduced creatinine, BUN, histopathological alterations, and MDA levels, and enhanced GSH amounts. Administration of glycerol and thymoquinone (5 mg/kg) had no significant effect on TNF-α amount but decreased NGAL protein levels. The administration of thymoquinone (5 mg/kg) alone did not display a significant difference from the control group. Conclusion: Rhabdomyolysis from glycerol injection in rats can cause kidney damage. Thymoquinone may attenuate renal dysfunction and oxidative stress. However, the TNF-α level was not significantly affected. Further studies are needed to explore the potential therapeutic effects of thymoquinone in managing AKI.

3.
Iran J Basic Med Sci ; 27(6): 768-774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645503

RESUMO

Objectives: Rhabdomyolysis (RM) is a serious fatal syndrome. The RM leads to acute kidney injury (AKI) as a fatal complication. The belief is that RM-induced AKI is triggered by myoglobin (MB). MB activates oxidative and apoptotic pathways. Trans-sodium crocetinate (TSC) is obtained from saffron. It has anti-oxidant and renoprotective effects. This research was designed to assess the mechanisms of MB-induced cytotoxicity in HEK-293 cells (human embryonic kidney cells) as well as the possible effects of TSC against MB-induced cytotoxicity. Materials and Methods: HEK-293 cells were exposed to diverse concentrations of TSC (2.5, 5, 10, 20, 40, 80, and 100 µM) for 24 hr. Then, MB (9 mg/ml) was added to the cells. After 24 hr, cell viability was measured through MTT, and the values of ROS generation were calculated using DCFH-DA assay. Also, autophagy and apoptosis markers in cells were assessed by western blot analysis. Results: MB decreased viability and increased ROS levels in HEK-293 cells. However, pretreatment of HEK-293 cells with TSC for 24 hr reduced the cytotoxicity and ROS production caused by MB. Furthermore, MB enhanced both the apoptosis (cleaved caspase-3 and Bax/Bcl-2 ratio) and autophagy markers (LC3II/I ratio and Beclin-1) in HEK-293 cells. On the other hand, TSC pretreatment condensed the levels of autophagy and apoptosis criteria in response to MB cytotoxicity. Conclusion: TSC has a positive effect in preventing MB-induced cytotoxicity in HEK-293 cells by increasing anti-oxidant activity and regulation of apoptotic and autophagy signaling pathways.

4.
Food Sci Nutr ; 9(9): 5293-5311, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34532035

RESUMO

Metabolic syndrome is a group of risk factors including high blood glucose, dyslipidemia, high blood pressure, and high body weight. It can increase the risk of diabetes and cardiovascular disorders, which are the important reasons for death around the world. Nowadays, there are numerous demands for herbal medicine because of less harmful effects and more useful effects in comparison with chemical options. Ginseng is one of the most famous herbs used as a drug for a variety of disorders in humans. The antihyperlipidemia, antihypertension, antihyperglycemic, and anti-obesity effects of ginseng and its active constituents such as ginsenosides have been shown in different studies. In this review article, the different in vitro, in vivo, and human studies concerning the effects of ginseng and its active constituents in metabolic syndrome have been summarized. According to these studies, ginseng can control metabolic syndrome and related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA