Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6668): 329-335, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37856600

RESUMO

Computing, since its inception, has been processor-centric, with memory separated from compute. Inspired by the organic brain and optimized for inorganic silicon, NorthPole is a neural inference architecture that blurs this boundary by eliminating off-chip memory, intertwining compute with memory on-chip, and appearing externally as an active memory chip. NorthPole is a low-precision, massively parallel, densely interconnected, energy-efficient, and spatial computing architecture with a co-optimized, high-utilization programming model. On the ResNet50 benchmark image classification network, relative to a graphics processing unit (GPU) that uses a comparable 12-nanometer technology process, NorthPole achieves a 25 times higher energy metric of frames per second (FPS) per watt, a 5 times higher space metric of FPS per transistor, and a 22 times lower time metric of latency. Similar results are reported for the Yolo-v4 detection network. NorthPole outperforms all prevalent architectures, even those that use more-advanced technology processes.

2.
Proc Natl Acad Sci U S A ; 113(41): 11441-11446, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27651489

RESUMO

Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware's underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer.

3.
Science ; 345(6197): 668-73, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25104385

RESUMO

Inspired by the brain's structure, we have developed an efficient, scalable, and flexible non-von Neumann architecture that leverages contemporary silicon technology. To demonstrate, we built a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via an intrachip network that integrates 1 million programmable spiking neurons and 256 million configurable synapses. Chips can be tiled in two dimensions via an interchip communication interface, seamlessly scaling the architecture to a cortexlike sheet of arbitrary size. The architecture is well suited to many applications that use complex neural networks in real time, for example, multiobject detection and classification. With 400-pixel-by-240-pixel video input at 30 frames per second, the chip consumes 63 milliwatts.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Simulação por Computador , Redes Neurais de Computação , Neurônios , Software , Sinapses
4.
IEEE Trans Image Process ; 20(8): 2315-28, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21292597

RESUMO

We describe a robust and efficient method for automatically matching and time-aligning electronic slides to videos of corresponding presentations. Matching electronic slides to videos provides new methods for indexing, searching, and browsing videos in distance-learning applications. However, robust automatic matching is challenging due to varied frame composition, slide distortion, camera movement, low-quality video capture, and arbitrary slides sequence. Our fully automatic approach combines image-based matching of slide to video frames with a temporal model for slide changes and camera events. To address these challenges, we begin by extracting scale-invariant feature-transformation (SIFT) keypoints from both slides and video frames, and matching them subject to a consistent projective transformation (homography) by using random sample consensus (RANSAC). We use the initial set of matches to construct a background model and a binary classifier for separating video frames showing slides from those without. We then introduce a new matching scheme for exploiting less distinctive SIFT keypoints that enables us to tackle more difficult images. Finally, we improve upon the matching based on visual information by using estimated matching probabilities as part of a hidden Markov model (HMM) that integrates temporal information and detected camera operations. Detailed quantitative experiments characterize each part of our approach and demonstrate an average accuracy of over 95% in 13 presentation videos.

5.
Stud Health Technol Inform ; 160(Pt 2): 846-50, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20841805

RESUMO

Modern Electronic Medical Record (EMR) systems often integrate large amounts of data from multiple disparate sources. To do so, EMR systems must align the data to create consistency between these sources. The data should also be presented in a manner that allows a clinician to quickly understand the complete condition and history of a patient's health. We develop the AALIM system to address these issues using advanced multimodal analytics. First, it extracts and computes multiple features and cues from the patient records and medical tests. This additional metadata facilitates more accurate alignment of the various modalities, enables consistency check and empowers a clear, concise presentation of the patient's complete health information. The system further provides a multimodal search for similar cases within the EMR system, and derives related conditions and drugs information from them. We applied our approach to cardiac data from a major medical care organization and found that it produced results with sufficient quality to assist the clinician making appropriate clinical decisions.


Assuntos
Institutos de Cardiologia , Sistemas de Apoio a Decisões Clínicas , Sistemas Computadorizados de Registros Médicos , Software , Tratamento Farmacológico , Registros Eletrônicos de Saúde , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA