Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10341, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710757

RESUMO

Interpretability in machine learning has become increasingly important as machine learning is being used in more and more applications, including those with high-stakes consequences such as healthcare where Interpretability has been regarded as a key to the successful adoption of machine learning models. However, using confounding/irrelevant information in making predictions by deep learning models, even the interpretable ones, poses critical challenges to their clinical acceptance. That has recently drawn researchers' attention to issues beyond the mere interpretation of deep learning models. In this paper, we first investigate application of an inherently interpretable prototype-based architecture, known as ProtoPNet, for breast cancer classification in digital pathology and highlight its shortcomings in this application. Then, we propose a new method that uses more medically relevant information and makes more accurate and interpretable predictions. Our method leverages the clustering concept and implicitly increases the number of classes in the training dataset. The proposed method learns more relevant prototypes without any pixel-level annotated data. To have a more holistic assessment, in addition to classification accuracy, we define a new metric for assessing the degree of interpretability based on the comments of a group of skilled pathologists. Experimental results on the BreakHis dataset show that the proposed method effectively improves the classification accuracy and interpretability by respectively 8 % and 18 % . Therefore, the proposed method can be seen as a step toward implementing interpretable deep learning models for the detection of breast cancer using histopathology images.


Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/classificação , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Feminino , Aprendizado Profundo , Aprendizado de Máquina , Redes Neurais de Computação , Algoritmos
2.
J Med Signals Sens ; 10(4): 219-227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33575194

RESUMO

BACKGROUND: The obstructive sleep apnea (OSA) detection has become a hot research topic because of the high risk of this disease. In this paper, we tested some powerful and low computational signal processing techniques for this task and compared their results with the recent achievements in OSA detection. METHODS: The Dual-tree complex wavelet transform (DT-CWT) is used in this paper to extract feature coefficients. From these coefficients, eight non-linear features are extracted and then reduced by the Multi-cluster feature selection (MCFS) algorithm. The remaining features are applied to the hybrid "K-means, RLS" RBF network which is a low computational rival for the Support vector machine (SVM) networks family. RESULTS AND CONCLUSION: The results showed suitable OSA detection percentage near 96% with a reduced complexity of nearly one third of the previously presented SVM based methods.

3.
J Electr Bioimpedance ; 11(1): 4-11, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33584897

RESUMO

Apnea is one of the deadliest diseases that can be prevented and cured if it is detected in time. In this paper, we propose a precise method for early detection of the obstructive sleep apnea (OSA) disease using the latest feature selection and extraction methods. The feature selection in this paper is based on the Dual tree complex wavelet (DT-CWT) coefficients of the ECG signals of several patients. The feature extraction from these coefficients is done using frequency and time techniques. The Feature selection is done using the spectral regression discriminant analysis (SRDA) algorithm and the classification is performed using the hybrid RBF network. A hybrid RBF neural network is introduced in this paper for detecting apnea that is much less computationally demanding than the previously presented SVM networks. Our findings showed a 3 percent improvement in the detection and at least a 30 percent reduction in the computational complexity in comparison with methods that have been presented recently.

4.
J Electr Bioimpedance ; 10(1): 47-54, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33584882

RESUMO

Primary recognition of heart diseases by exploiting computer aided diagnosis (CAD) machines, decreases the vast rate of fatality among cardiac patients. Recognition of heart abnormalities is a staggering task because the low changes in ECG signals may not be exactly specified with eyesight. In this paper, an efficient approach for ECG arrhythmia diagnosis is proposed based on a combination of discrete wavelet transform and higher order statistics feature extraction and entropy based feature selection methods. Using the neural network and support vector machine, five classes of heartbeat categories are classified. Applying the neural network and support vector machine method, our proposed system is able to classify the arrhythmia classes with high accuracy (99.83%) and (99.03%), respectively. The advantage of the presented procedure has been experimentally demonstrated compared to the other recently presented methods in terms of accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA