Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Nutr ; 131(7): 1125-1157, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38031409

RESUMO

Research indicates that green tea extract (GTE) supplementation is beneficial for a range of conditions, including several forms of cancer, CVD and liver diseases; nevertheless, the existing evidence addressing its effects on body composition, oxidative stress and obesity-related hormones is inconclusive. This systematic review and meta-analysis aimed to investigate the effects of GTE supplementation on body composition (body mass (BM), body fat percentage (BFP), fat mass (FM), BMI, waist circumference (WC)), obesity-related hormones (leptin, adiponectin and ghrelin) and oxidative stress (malondialdehyde (MDA) and total antioxidant capacity (TAC)) markers. We searched proper databases, including PubMed/Medline, Scopus and Web of Science, up to July 2022 to recognise published randomised controlled trials (RCT) that investigated the effects of GTE supplementation on the markers mentioned above. A random effects model was used to carry out a meta-analysis. The heterogeneity among the studies was assessed using the I2 index. Among the initial 11 286 studies identified from an electronic database search, fifty-nine studies involving 3802 participants were eligible to be included in this meta-analysis. Pooled effect sizes indicated that BM, BFP, BMI and MDA significantly reduced following GTE supplementation. In addition, GTE supplementation increased adiponectin and TAC, with no effects on FM, leptin and ghrelin. Certainty of evidence across outcomes ranged from low to high. Our results suggest that GTE supplementation can attenuate oxidative stress, BM, BMI and BFP, which are thought to negatively affect human health. Moreover, GTE as a nutraceutical dietary supplement can increase TAC and adiponectin.


Assuntos
Antioxidantes , Leptina , Humanos , Adiponectina/farmacologia , Antioxidantes/farmacologia , Composição Corporal , Índice de Massa Corporal , Suplementos Nutricionais , Grelina , Leptina/farmacologia , Obesidade , Estresse Oxidativo , Extratos Vegetais/farmacologia , Chá
2.
Biol Trace Elem Res ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870684

RESUMO

Zinc supplementation has therapeutic effects on cardiovascular disease (CVD) risk factors, including dyslipidemia, hyperglycemia, and inflammation as the main contributors to CVD pathogenesis. Since CVD is a major cause of mortality among people with type 2 diabetes mellitus (T2DM), this study aimed to overview the potential effects of zinc supplementation on CVD risk factors in T2DM patients. To determine appropriate randomized clinical trials (RCTs) investigating the effects of zinc supplementation on CVD risk factors, electronic sources including PubMed, Web of Science, and Scopus were systematically searched until January 2023. The heterogeneity of trials was checked using the I2 statistic. According to the heterogeneity tests, random-effects models were estimated, and pooled data were defined as the weighted mean difference (WMD) with a 95% confidence interval (CI). Of the 4004 initial records, 23 studies that met inclusion criteria were analyzed in this meta-analysis. The pooled findings indicated the significant lowering effects of zinc supplementation on triglycerides (TG), total cholesterol (TC), fasting blood glucose (FBG), hemoglobin A1C (HbA1C), and C-reactive protein (CRP), while high-density cholesterol (HDL) concentrations showed an elevation after zinc supplementation. In addition to statistical significance, the effect of zinc supplementation on most of the variables was clinically significant; however, the quality of evidence in the included studies is regarded as low or very low for most variables. Our study demonstrated that zinc supplementation has beneficial effects on glycemic control markers, lipid profile, and CRP levels as a classic marker of inflammation in T2DM. Due to the high degree of heterogeneity between studies and the low rate of quality in them, further well-designed studies are necessitated to strengthen our findings.

3.
Nutr J ; 22(1): 49, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37798798

RESUMO

BACKGROUND: It is suggested that supplementation with milk protein (MP) has the potential to ameliorate the glycemic profile; however, the exact impact and certainty of the findings have yet to be evaluated. This systematic review and dose-response meta-analysis of randomized controlled trials (RCTs) assessed the impact of MP supplementation on the glycemic parameters in adults. METHODS: A systematic search was carried out among online databases to determine eligible RCTs published up to November 2022. A random-effects model was performed for the meta-analysis. RESULTS: A total of 36 RCTs with 1851 participants were included in the pooled analysis. It was displayed that supplementation with MP effectively reduced levels of fasting blood glucose (FBG) (weighted mean difference (WMD): -1.83 mg/dL, 95% CI: -3.28, -0.38; P = 0.013), fasting insulin (WMD: -1.06 uU/mL, 95% CI: -1.76, -0.36; P = 0.003), and homeostasis model assessment of insulin resistance (HOMA-IR) (WMD: -0.27, 95% CI: -0.40, -0.14; P < 0.001) while making no remarkable changes in serum hemoglobin A1c (HbA1c) values (WMD: 0.01%, 95% CI: -0.14, 0.16; P = 0.891). However, there was a significant decline in serum levels of HbA1c among participants with normal baseline body mass index (BMI) based on sub-group analyses. In addition, HOMA-IR values were significantly lower in the MP supplement-treated group than their untreated counterparts in short- and long-term supplementation (≤ 8 and > 8 weeks) with high or moderate doses (≥ 60 or 30-60 g/d) of MP or whey protein (WP). Serum FBG levels were considerably reduced upon short-term administration of a low daily dose of WP (< 30 g). Furthermore, the levels of serum fasting insulin were remarkably decreased during long-term supplementation with high or moderate daily doses of WP. CONCLUSION: The findings of this study suggest that supplementation with MP may improve glycemic control in adults by reducing the values of fasting insulin, FBG, and HOMA-IR. Additional trials with longer durations are required to confirm these findings.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adulto , Humanos , Hemoglobinas Glicadas , Glicemia/metabolismo , Proteínas do Leite , Suplementos Nutricionais , Insulina , Proteínas do Soro do Leite
4.
Nutr J ; 22(1): 47, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794481

RESUMO

BACKGROUND: The present systematic review and meta-analysis sought to evaluate the effects of conjugated linoleic acid (CLA) supplementation on glycemic control, adipokines, cytokines, malondialdehyde (MDA) and liver function enzymes in patients at risk of cardiovascular disease. METHODS: Relevant studies were obtained by searching the PubMed, SCOPUS and Web of Science databases (from inception to January 2023). Weighted mean differences (WMD) and 95% confidence intervals (CIs) were pooled using a random-effects model. Heterogeneity, sensitivity analysis, and publication bias were reported using standard methods. RESULTS: A pooled analysis of 13 randomized controlled trials (RCTs) revealed that CLA supplementation led to a significant increment in fasting blood glucose (FBG) (WMD: 4.49 mg/dL; 95%CI: 2.39 to 6.59; P < 0.001), and aspartate aminotransferase (AST) (WMD: 2.54 IU/L; 95%CI: 0.06 to 5.01; P = 0.044). Moreover, CLA supplementation decreased leptin (WMD: -1.69 ng/ml; 95% CI: -1.80 to -1.58; P < 0.001), and interleukin 6 (IL-6) (WMD: -0.44 pg/ml; 95%CI: -0.86 to -0.02; P = 0.037). However, there was no effect on hemoglobin A1c (HbA1c), homeostatic model assessment for insulin resistance (HOMA-IR), C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and alanine aminotransferase (ALT) adiponectin compared to the control group. CONCLUSION: Our findings showed the overall favorable effect of CLA supplementation on the adipokines and cytokines including serum IL-6, and leptin, while increasing FBG and AST. It should be noted that the mentioned metabolic effects of CLA consumption were small and may not reach clinical importance. PROSPERO REGISTERATION COD: CRD42023426374.


Assuntos
Doenças Cardiovasculares , Ácidos Linoleicos Conjugados , Humanos , Suplementos Nutricionais , Leptina , Citocinas , Ácidos Linoleicos Conjugados/farmacologia , Interleucina-6 , Adipocinas , Doenças Cardiovasculares/prevenção & controle , Controle Glicêmico , Malondialdeído , Fígado/metabolismo , Glicemia/metabolismo
5.
J Trace Elem Med Biol ; 79: 127244, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37399684

RESUMO

BACKGROUND AND OBJECTIVE: A deficit in zinc has been related to a higher probability of developing cardiovascular diseases (CVDs). The anti-inflammatory and anti-oxidative capabilities of zinc may have a wide range of therapeutic impacts on CVDs. We conducted a comprehensive systematic review and meta-analysis of the possible impacts that zinc supplementation may have on the risk factors associated with CVDs. METHODS: To identify eligible randomized clinical trials (RCTs) evaluating the effects of zinc supplementation on CVDs risk factors, electronic databases including PubMed, Web of Science, and Scopus were systematically searched up to January 2023. The heterogeneity of trials was checked using the I2 statistic. According to the heterogeneity tests, random effects models were estimated and pooled data were defined as the weighted mean difference (WMD) with a 95% confidence interval (CI). RESULTS: Of 23165 initial records, 75 studies that met inclusion criteria were analyzed in this meta-analysis. The pooled findings indicated the significant lowering effects of zinc supplementation on triglycerides (TG), total cholesterol (TC), fasting blood glucose (FBG), Hemoglobin A1C (HbA1C), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), C-reactive protein (CRP), interleukin-6 (IL-6), Tumor necrosis factor-α (TNF-α), nitric oxide (NO), malondialdehyde (MDA), total antioxidant capacity (TAC), and glutathione (GSH), with no noticeable effects on low-density lipoprotein (LDL), high-density lipoprotein (HDL), insulin, systolic blood pressure (SBP), diastolic blood pressure (DBP), aspartate transaminase (AST), and Alanine aminotransferase (ALT). CONCLUSION: Overall, zinc supplementation may boost recognized coronary risk factors that contribute to the development of CVDs. Future research should be conducted to bolster our results.


Assuntos
Doenças Cardiovasculares , Suplementos Nutricionais , Humanos , Zinco , Glicemia/metabolismo , Triglicerídeos
6.
Curr Pharm Des ; 29(21): 1671-1700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496241

RESUMO

BACKGROUND: In recent times, modifying dietary habits to control cardiovascular risk factors has gained significant attention. However, previous studies have yielded inconsistent results regarding the effects of lycopene and tomato consumption on cardiovascular risk factors. OBJECTIVE: The objective of this study was to assess the impact of consuming lycopene and tomatoes on various cardiovascular risks factors such as lipid profile, glycemic control markers, blood pressure, inflammation, oxidative stress, and body weight. METHODS: A systematic literature search was carried out using electronic databases, including PubMed, Web of Science, and Scopus, up to November 2022 to identify eligible Randomized Control Trials (RCTs) evaluating the effect of lycopene and tomato consumption on cardiovascular risk factors. Heterogeneity tests of the selected trials were performed using the I2 statistic. Random effects models were assessed based on the heterogeneity tests, and pooled data were determined as the weighted mean difference (WMD) with a 95% confidence interval (CI). RESULTS: Out of 27,438 records initially identified, a total of 34 studies met the eligibility criteria and were included in this meta-analysis. The results showed that lycopene consumption was associated with a significant reduction in malondialdehyde (MDA) levels, indicating a potential benefit in reducing oxidative stress. However, lycopene and tomato consumption did not have significant effects on other cardiovascular risk factors such as triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), fasting blood glucose (FBG), systolic blood pressure (SBP), diastolic blood pressure (DBP), Intercellular Adhesion Molecule 1 (ICAM-1), c-reactive protein (CRP), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), body weight, and body mass index (BMI). CONCLUSION: Overall, the findings showed that lycopene and tomato consumption did not affect cardiovascular risk factors. However, lycopene supplementation may result in a significant improvement in MDA levels. With the view to confirming these results, further studies with long-term duration and different doses are needed.


Assuntos
Solanum lycopersicum , Adulto , Humanos , Licopeno , Abordagem GRADE , LDL-Colesterol , Fatores de Risco de Doenças Cardíacas , Peso Corporal , Fatores de Risco
7.
Front Nutr ; 9: 1084455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704803

RESUMO

Purpose: A bulk of observational studies have revealed the protective role of green tea supplementation in cardiovascular diseases. The current systematic review and meta-analysis study aimed to establish the effects of green tea supplementation on cardiovascular risk factors including lipid profile, blood pressure, glycemic control markers and CRP. Methods: A systematic literature search of randomized clinical trials (RCTs) that investigated the effects of green tea supplementation and cardiovascular risk factors was undertaken in online databases including PubMed/Medline, Scopus, Web of Science, and Embase using a combination of green tea and cardiovascular risk factors search terms. Meta-analyses were carried out using a random-effects model. The I2 index was used to assess the heterogeneity of RCTs. Results: Among the initial 11,286 studies that were identified from electronic databases search, 55 eligible RCTs with 63 effect sizes were eligible. Results from the random effects meta-analysis showed that GTE supplementation significantly reduced TC (WMD = -7.62; 95% CI: -10.51, -4.73; P = < 0.001), LDL-C (WMD = -5.80; 95% CI: -8.30, -3.30; P = < 0.001), FBS (WMD = -1.67; 95% CI: -2.58, -0.75; P = < 0.001), HbA1c (WMD = -0.15; 95% CI: -0.26, -0.04; P = 0.008), DBP (WMD = -0.87; 95% CI: -1.45, -0.29; P = 0.003), while increasing HDL-C (WMD = 1.85; 95% CI: 0.87, 2.84; P = 0.010). Subgroup analyses based on the duration of supplementation (≥ 12 vs. < 12 weeks), dose of green tea extract (GTE) (≥1,000 vs. < 1,000 mg/d), sex (male, female, and both), baseline serum levels of lipid profile, and glycemic control factors demonstrated different results for some risk factors. Conclusion: The current study suggests improvements in the lipid and glycemic profiles following green tea supplementation. These findings support previous evidence showing the health benefits of green tea supplementation on cardiometabolic risk factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA