Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38918051

RESUMO

Measuring the dynamic relationship between neuromodulators, such as dopamine, and neuronal action potentials is imperative to understand how these fundamental modes of neural signaling interact to mediate behavior. We developed methods to measure concurrently dopamine and extracellular action potentials (i.e., spikes) in monkeys. Standard fast-scan cyclic voltammetric (FSCV) electrochemical (EChem) and electrophysiological (EPhys) recording systems are combined and used to collect spike and dopamine signals, respectively, from an array of carbon fiber (CF) sensors implanted in the monkey striatum. FSCV requires the application of small voltages at the implanted sensors to measure redox currents generated from target molecules, such as dopamine. These applied voltages create artifacts at neighboring EPhys measurement sensors which may lead to misclassification of these signals as physiological spikes. Therefore, simple automated temporal interpolation algorithms were designed to remove these artifacts and enable accurate spike extraction. We validated these methods using simulated artifacts and demonstrated an average spike recovery rate of 84.5%. We identified and discriminated cell type-specific units in the monkey striatum that were shown to correlate to specific behavioral task parameters related to reward size and eye movement direction. Synchronously recorded spike and dopamine signals displayed contrasting relations to the task variables, suggesting a complex relationship between these two modes of neural signaling. Future application of our methods will help advance our understanding of the interactions between neuromodulator signaling and neuronal activity, to elucidate more detailed mechanisms of neural circuitry and plasticity mediating behaviors in health and in disease.


Assuntos
Potenciais de Ação , Fibra de Carbono , Dopamina , Macaca mulatta , Animais , Potenciais de Ação/fisiologia , Dopamina/metabolismo , Masculino , Neurônios/fisiologia , Neurônios/metabolismo , Eletrodos Implantados , Corpo Estriado/fisiologia , Corpo Estriado/metabolismo , Artefatos , Técnicas Eletroquímicas/métodos , Movimentos Oculares/fisiologia , Recompensa
2.
Biosens Bioelectron ; 241: 115625, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708685

RESUMO

We developed a flexible "electrode-thread" array for recording dopamine neurochemicals from a lateral distribution of subcortical targets (up to 16) transverse to the axis of insertion. Ultrathin (∼10 µm diameter) carbon fiber (CF) electrode-threads (CFETs) are clustered into a tight bundle to introduce them into the brain from a single-entry point. The individual CFETs splay laterally in deep brain tissue during insertion due to their innate flexibility. This spatial redistribution allows navigation of the CFETs towards deep brain targets spreading horizontally from the axis of insertion. Commercial "linear" arrays provide single-entry insertion but only allow measurements along the axis of insertion. Horizontally configured arrays inflict separate penetrations for each individual channel. We tested functional performance of our CFET arrays in vivo for recording dopamine and for providing lateral spread to multiple distributed sites in the rat striatum. Spatial spread was further characterized in agar brain phantoms as a function of insertion depth. We also developed protocols to slice the embedded CFETs within fixed brain tissue using standard histology. This method allowed extraction of the precise spatial coordinates of the implanted CFETs and their recording sites as integrated with immunohistochemical staining for surrounding anatomical, cytological, and protein expression labels. Our CFET array has the potential to unlock a wide range of applications, from uncovering the role of neuromodulators in synaptic plasticity, to addressing critical safety barriers in clinical translation towards diagnostic and adaptive treatment in Parkinson's disease and major mood disorders.

3.
bioRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131810

RESUMO

We developed a flexible "electrode-thread" array for recording dopamine neurochemical activity from a lateral distribution of subcortical targets (up to 16) transverse to the axis of insertion. Ultrathin (∼ 10 µm diameter) carbon fiber (CF) electrode-threads (CFETs) are clustered into a tight bundle to introduce them into the brain from a single entry point. The individual CFETs splay laterally in deep brain tissue during insertion due to their innate flexibility. This spatial redistribution allows navigation of the CFETs towards deep brain targets spreading horizontally from the axis of insertion. Commercial "linear" arrays provide single entry insertion but only allow measurements along the axis of insertion. Horizontally configured neurochemical recording arrays inflict separate penetrations for each individual channel (i.e., electrode). We tested functional performance of our CFET arrays in vivo for recording dopamine neurochemical dynamics and for providing lateral spread to multiple distributed sites in the striatum of rats. Spatial spread was further characterized using agar brain phantoms to measure electrode deflection as a function of insertion depth. We also developed protocols to slice the embedded CFETs within fixed brain tissue using standard histology techniques. This method allowed extraction of the precise spatial coordinates of the implanted CFETs and their recording sites as integrated with immunohistochemical staining for surrounding anatomical, cytological, and protein expression labels. Neurochemical recording operations tested here can be integrated with already widely established capabilities of CF-based electrodes to record single neuron activity and local field potentials, to enable multi-modal recording functions. Our CFET array has the potential to unlock a wide range of applications, from uncovering the role of neuromodulators in synaptic plasticity, to addressing critical safety barriers in clinical translation towards diagnostic and adaptive treatment in Parkinson's disease and major mood disorders.

4.
bioRxiv ; 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38187624

RESUMO

Measuring the dynamic relationship between neuromodulators, such as dopamine, and neuronal action potentials is imperative to understand how these fundamental modes of neural signaling interact to mediate behavior. Here, we developed methods to measure concurrently dopamine and extracellular action potentials (i.e., spikes) and applied these in a monkey performing a behavioral task. Standard fast-scan cyclic voltammetric (FSCV) electrochemical (EChem) and electrophysiological (EPhys) recording systems are combined and used to collect spike and dopamine signals, respectively, from an array of carbon fiber (CF) sensors implanted in the monkey striatum. FSCV requires the application of small voltages at the implanted sensors to measure redox currents generated from target molecules, such as dopamine. These applied voltages create artifacts at neighboring EPhys-measurement sensors, producing signals that may falsely be classified as physiological spikes. Therefore, simple automated temporal interpolation algorithms were designed to remove these artifacts and enable accurate spike extraction. We validated these methods using simulated artifacts and demonstrated an average spike recovery rate of 84.5%. This spike extraction was performed on data collected from concurrent EChem and EPhys recordings made in a task-performing monkey to discriminate cell-type specific striatal units. These identified units were shown to correlate to specific behavioral task parameters related to reward size and eye-movement direction. Synchronous measures of spike and dopamine signals displayed contrasting relations to the behavioral task parameters, as taken from our small set of representative data, suggesting a complex relationship between these two modes of neural signaling. Future application of our methods will help advance our understanding of the interactions between neuromodulator signaling and neuronal activity, to elucidate more detailed mechanisms of neural circuitry and plasticity mediating behaviors in health and in disease.

5.
Ann Biomed Eng ; 43(3): 603-15, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25737163

RESUMO

Reliable cerebrospinal fluid (CSF) draining methods are needed to treat hydrocephalus, a chronic debilitating brain disorder. Current shunt implant treatments are characterized by high failure rates that are to some extent attributed to their length and multiple components. The designed valve, made of hydrogel, steers away from such protracted schemes and intends to provide a direct substitute for faulty arachnoid granulations, the brain's natural CSF draining valves, and restore CSF draining operations within the cranium. The valve relies on innate hydrogel swelling phenomena to strengthen reverse flow sealing at idle and negative pressures thereby alleviating common valve failure mechanisms. In vitro measurements display operation in range of natural CSF draining (cracking pressure, PT ~ 1-110 mmH2O and outflow hydraulic resistance, Rh ~ 24-152 mmH2O/mL/min), with negligible reverse flow leakage (flow, QO > -10 µL/min). Hydrodynamic measurements and over-time tests under physically relevant conditions further demonstrate the valve's operationally-reproducible properties and strengthen its validity for use as a chronic implant.


Assuntos
Hidrocefalia/terapia , Hidrogéis/uso terapêutico , Miniaturização/instrumentação , Líquido Cefalorraquidiano , Desenho de Equipamento , Humanos , Hidrodinâmica , Pressão Intracraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA