Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37018136

RESUMO

MOTIVATION: Environmental monitoring of pathogens provides an accurate and timely source of information for public health authorities and policymakers. In the last 2 years, wastewater sequencing proved to be an effective way of detection and quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants circulating in population. Wastewater sequencing produces substantial amounts of geographical and genomic data. Proper visualization of spatial and temporal patterns in these data is crucial for the assessment of the epidemiological situation and forecasting. Here, we present a web-based dashboard application for the visualization and analysis of data obtained from sequencing of environmental samples. The dashboard provides multi-layered visualization of geographical and genomic data. It allows to display frequencies of detected pathogen variants as well as individual mutation frequencies. The features of WAVES (Web-based tool for Analysis and Visualization of Environmental Samples) for early tracking and detection of novel variants in the wastewater are demonstrated in an example of BA.1 variant and the signature Spike mutation S: E484A. WAVES dashboard is easily customized through the editable configuration file and can be used for different types of pathogens and environmental samples. AVAILABILITY AND IMPLEMENTATION: WAVES source code is freely available at https://github.com/ptriska/WavesDash under MIT license. A demo version of this application can be accessed at: https://wavesdashboard.azurewebsites.net/.


Assuntos
COVID-19 , Águas Residuárias , Humanos , SARS-CoV-2/genética , Software , Internet
2.
Emerg Microbes Infect ; 12(1): e2146536, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36357372

RESUMO

Bordetella pertussis, the causative agent of whooping cough, is an extracellular, strictly human pathogen. However, it has been shown that B. pertussis cells can escape phagocytic killing and survive in macrophages upon internalization. Our time-resolved RNA-seq data suggest that B. pertussis efficiently adapts to the intramacrophage environment and responds to host bactericidal activities. We show that this adaptive response is multifaceted and, surprisingly, related to the BvgAS two-component system, a master regulator of virulence. Our results show that the expression of this regulatory circuit is downregulated upon internalization. Moreover, we demonstrate that the switch to the avirulent Bvg- phase augments a very complex process based on the adjustment of central and energy metabolism, cell wall reinforcement, maintenance of appropriate redox and metal homeostasis, and repair of damaged macromolecules. Nevertheless, not all observed effects could be simply attributed to the transition to Bvg- phase, suggesting that additional regulators are involved in the adaptation to the intramacrophage environment. Interestingly, a large number of genes required for the metabolism of sulphur were strongly modulated within macrophages. In particular, the mutant lacking two genes encoding cysteine dioxygenases displayed strongly attenuated cytotoxicity toward THP-1 cells. Collectively, our results suggest that intracellular B. pertussis cells have adopted the Bvg- mode to acclimate to the intramacrophage environment and respond to antimicrobial activities elicited by THP-1 cells. Therefore, we hypothesize that the avirulent phase represents an authentic phenotype of internalized B. pertussis cells.


Assuntos
Bordetella pertussis , Coqueluche , Humanos , Bordetella pertussis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenótipo , Macrófagos/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
BMC Bioinformatics ; 23(1): 551, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536300

RESUMO

BACKGROUND: The genomes of SARS-CoV-2 are classified into variants, some of which are monitored as variants of concern (e.g. the Delta variant B.1.617.2 or Omicron variant B.1.1.529). Proportions of these variants circulating in a human population are typically estimated by large-scale sequencing of individual patient samples. Sequencing a mixture of SARS-CoV-2 RNA molecules from wastewater provides a cost-effective alternative, but requires methods for estimating variant proportions in a mixed sample. RESULTS: We propose a new method based on a probabilistic model of sequencing reads, capturing sequence diversity present within individual variants, as well as sequencing errors. The algorithm is implemented in an open source Python program called VirPool. We evaluate the accuracy of VirPool on several simulated and real sequencing data sets from both Illumina and nanopore sequencing platforms, including wastewater samples from Austria and France monitoring the onset of the Alpha variant. CONCLUSIONS: VirPool is a versatile tool for wastewater and other mixed-sample analysis that can handle both short- and long-read sequencing data. Our approach does not require pre-selection of characteristic mutations for variant profiles, it is able to use the entire length of reads instead of just the most informative positions, and can also capture haplotype dependencies within a single read.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , Humanos , RNA Viral , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Águas Residuárias/virologia
4.
Nat Biotechnol ; 40(12): 1814-1822, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35851376

RESUMO

SARS-CoV-2 surveillance by wastewater-based epidemiology is poised to provide a complementary approach to sequencing individual cases. However, robust quantification of variants and de novo detection of emerging variants remains challenging for existing strategies. We deep sequenced 3,413 wastewater samples representing 94 municipal catchments, covering >59% of the population of Austria, from December 2020 to February 2022. Our system of variant quantification in sewage pipeline designed for robustness (termed VaQuERo) enabled us to deduce the spatiotemporal abundance of predefined variants from complex wastewater samples. These results were validated against epidemiological records of >311,000 individual cases. Furthermore, we describe elevated viral genetic diversity during the Delta variant period, provide a framework to predict emerging variants and measure the reproductive advantage of variants of concern by calculating variant-specific reproduction numbers from wastewater. Together, this study demonstrates the power of national-scale WBE to support public health and promises particular value for countries without extensive individual monitoring.


Assuntos
COVID-19 , Vigilância Epidemiológica Baseada em Águas Residuárias , Humanos , Águas Residuárias , SARS-CoV-2/genética , COVID-19/epidemiologia , RNA Viral
5.
Front Microbiol ; 13: 919539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832820

RESUMO

In Pseudomonas aeruginosa, the RNA chaperone Hfq and the catabolite repression protein Crc act in concert to regulate numerous genes during carbon catabolite repression (CCR). After alleviation of CCR, the RNA CrcZ sequesters Hfq/Crc, which leads to a rewiring of gene expression to ensure the consumption of less preferred carbon and nitrogen sources. Here, we performed a multiomics approach by assessing the transcriptome, translatome, and proteome in parallel in P. aeruginosa strain O1 during and after relief of CCR. As Hfq function is impeded by the RNA CrcZ upon relief of CCR, and Hfq is known to impact antibiotic susceptibility in P. aeruginosa, emphasis was laid on links between CCR and antibiotic susceptibility. To this end, we show that the mexGHI-opmD operon encoding an efflux pump for the antibiotic norfloxacin and the virulence factor 5-Methyl-phenazine is upregulated after alleviation of CCR, resulting in a decreased susceptibility to the antibiotic norfloxacin. A model for indirect regulation of the mexGHI-opmD operon by Hfq is presented.

6.
Water Res ; 215: 118257, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35303559

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gave rise to an international public health emergency in 3 months after its emergence in Wuhan, China. Typically for an RNA virus, random mutations occur constantly leading to new lineages, incidental with a higher transmissibility. The highly infective alpha lineage, firstly discovered in the UK, led to elevated mortality and morbidity rates as a consequence of Covid-19, worldwide. Wastewater surveillance proved to be a powerful tool for early detection and subsequent monitoring of the dynamics of SARS-CoV-2 and its variants in a defined catchment. Using a combination of sequencing and RT-qPCR approaches, we investigated the total SARS-CoV-2 concentration and the emergence of the alpha lineage in wastewater samples in Vienna, Austria linking it to clinical data. Based on a non-linear regression model and occurrence of signature mutations, we conclude that the alpha variant was present in Vienna sewage samples already in December 2020, even one month before the first clinical case was officially confirmed and reported by the health authorities. This provides evidence that a well-designed wastewater monitoring approach can provide a fast snapshot and may detect the circulating lineages in wastewater weeks before they are detectable in the clinical samples. Furthermore, declining 14 days prevalence data with simultaneously increasing SARS-CoV-2 total concentration in wastewater indicate a different shedding behavior for the alpha variant. Overall, our results support wastewater surveillance to be a suitable approach to spot early circulating SARS-CoV-2 lineages based on whole genome sequencing and signature mutations analysis.


Assuntos
COVID-19 , Vigilância Epidemiológica Baseada em Águas Residuárias , COVID-19/epidemiologia , Humanos , SARS-CoV-2/genética , Águas Residuárias
7.
Membranes (Basel) ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34677509

RESUMO

Membrane proteins are involved in many aspects of cellular biology; for example, they regulate how cells interact with their environment, so such proteins are important drug targets. The rapid advancement in the field of immune effector cell therapy has been expanding the horizons of synthetic membrane receptors in the areas of cell-based immunotherapy and cellular medicine. However, the investigation of membrane proteins, which are key constituents of cells, is hampered by the difficulty and complexity of their in vitro synthesis, which is of unpredictable yield. Cell-free synthesis is herein employed to unravel the impact of the expression construct on gene transcription and translation, without the complex regulatory mechanisms of cellular systems. Through the systematic design of plasmids in the immediacy of the start of the target gene, it was possible to identify translation initiation and the conformation of mRNA as the main factors governing the cell-free expression efficiency of the human voltage-dependent anion channel (VDAC), which is a relevant membrane protein in drug-based therapy. A simple translation initiation model was developed to quantitatively assess the expression potential for the designed constructs. A scoring function that quantifies the feasibility of the formation of the translation initiation complex through the ribosome-mRNA hybridization energy and the accessibility of the mRNA segment binding to the ribosome is proposed. The scoring function enables one to optimize plasmid sequences and semi-quantitatively predict protein expression efficiencies. This scoring function is publicly available as webservice XenoExpressO at University of Vienna, Austria.

8.
Front Microbiol ; 12: 626715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995291

RESUMO

Pseudomonas aeruginosa (Pae) is notorious for its high-level resistance toward clinically used antibiotics. In fact, Pae has rendered most antimicrobials ineffective, leaving polymyxins and aminoglycosides as last resort antibiotics. Although several resistance mechanisms of Pae are known toward these drugs, a profounder knowledge of hitherto unidentified factors and pathways appears crucial to develop novel strategies to increase their efficacy. Here, we have performed for the first time transcriptome analyses and ribosome profiling in parallel with strain PA14 grown in synthetic cystic fibrosis medium upon exposure to polymyxin E (colistin) and tobramycin. This approach did not only confirm known mechanisms involved in colistin and tobramycin susceptibility but revealed also as yet unknown functions/pathways. Colistin treatment resulted primarily in an anti-oxidative stress response and in the de-regulation of the MexT and AlgU regulons, whereas exposure to tobramycin led predominantly to a rewiring of the expression of multiple amino acid catabolic genes, lower tricarboxylic acid (TCA) cycle genes, type II and VI secretion system genes and genes involved in bacterial motility and attachment, which could potentially lead to a decrease in drug uptake. Moreover, we report that the adverse effects of tobramycin on translation are countered with enhanced expression of genes involved in stalled ribosome rescue, tRNA methylation and type II toxin-antitoxin (TA) systems.

9.
Emerg Infect Dis ; 27(1): 57-68, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33350934

RESUMO

Despite high vaccination coverage, pertussis is increasing in many industrialized countries, including the Czech Republic. To better understand Bordetella pertussis resurgence, we analyzed historic strains and recent clinical isolates by using a comparative omics approach. Whole-genome sequencing showed that historic and recent isolates of B. pertussis have substantial variation in genome organization and form separate phylogenetic clusters. Subsequent RNA sequence analysis and liquid chromatography with mass tandem spectrometry analyses showed that these variations translated into discretely separated transcriptomic and proteomic profiles. When compared with historic strains, recent isolates showed increased expression of flagellar genes and genes involved in lipopolysaccharide biosynthesis and decreased expression of polysaccharide capsule genes. Compared with reference strain Tohama I, all strains had increased expression and production of the type III secretion system apparatus. We detected the potential link between observed effects and insertion sequence element-induced changes in gene context only for a few genes.


Assuntos
Bordetella pertussis , Coqueluche , Bordetella pertussis/genética , República Tcheca , Humanos , Vacina contra Coqueluche , Filogenia , Proteômica , Coqueluche/epidemiologia
10.
Genome Res ; 30(8): 1107-1118, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32727871

RESUMO

Adenosine-to-inosine RNA editing and pre-mRNA splicing largely occur cotranscriptionally and influence each other. Here, we use mice deficient in either one of the two editing enzymes ADAR (ADAR1) or ADARB1 (ADAR2) to determine the transcriptome-wide impact of RNA editing on splicing across different tissues. We find that ADAR has a 100× higher impact on splicing than ADARB1, although both enzymes target a similar number of substrates with a large common overlap. Consistently, differentially spliced regions frequently harbor ADAR editing sites. Moreover, catalytically dead ADAR also impacts splicing, demonstrating that RNA binding of ADAR affects splicing. In contrast, ADARB1 editing sites are found enriched 5' of differentially spliced regions. Several of these ADARB1-mediated editing events change splice consensus sequences, therefore strongly influencing splicing of some mRNAs. A significant overlap between differentially edited and differentially spliced sites suggests evolutionary selection toward splicing being regulated by editing in a tissue-specific manner.


Assuntos
Adenosina Desaminase/genética , Edição de RNA/genética , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Adenosina/química , Animais , Inosina/química , Camundongos , Camundongos Knockout , RNA Circular/genética , RNA Mensageiro/genética , Análise de Sequência de RNA
11.
RNA ; 26(9): 1198-1215, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32424019

RESUMO

In Escherichia coli, endoribonuclease RNase E initiates degradation of many RNAs and represents a hub for post-transcriptional regulation. The tetrameric adaptor protein RapZ targets the small regulatory RNA GlmZ to degradation by RNase E. RapZ binds GlmZ through a domain located at the carboxyl terminus and interacts with RNase E, promoting GlmZ cleavage in the base-pairing region. When necessary, cleavage of GlmZ is counteracted by the homologous small RNA GlmY, which sequesters RapZ through molecular mimicry. In the current study, we addressed the molecular mechanism employed by RapZ. We show that RapZ mutants impaired in RNA-binding but proficient in binding RNase E are able to stimulate GlmZ cleavage in vivo and in vitro when provided at increased concentrations. In contrast, a truncated RapZ variant retaining RNA-binding activity but incapable of contacting RNase E lacks this activity. In agreement, we find that tetrameric RapZ binds the likewise tetrameric RNase E through direct interaction with its large globular domain within the catalytic amino terminus, independent of RNA. Although RapZ stimulates cleavage of at least one non-cognate RNA by RNase E in vitro, its activity is restricted to GlmZ in vivo as revealed by RNA sequencing, suggesting that certain features within the RNA substrate are also required for cleavage. In conclusion, RapZ boosts RNase E activity through interaction with its catalytic domain, which represents a novel mechanism of RNase E activation. In contrast, RNA-binding has a recruiting role, increasing the likelihood that productive RapZ/GlmZ/RNase E complexes form.


Assuntos
Endorribonucleases/genética , Proteínas de Escherichia coli/genética , Mapas de Interação de Proteínas/genética , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Pareamento de Bases/genética , Catálise , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Mimetismo Molecular/genética , Estabilidade de RNA/genética
12.
Nucleic Acids Res ; 48(11): 6157-6169, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32392304

RESUMO

The TRM10 family of methyltransferases is responsible for the N1-methylation of purines at position 9 of tRNAs in Archaea and Eukarya. The human genome encodes three TRM10-type enzymes, of which only the mitochondrial TRMT10C was previously characterized in detail, whereas the functional significance of the two presumably nuclear enzymes TRMT10A and TRMT10B remained unexplained. Here we show that TRMT10A is m1G9-specific and methylates a subset of nuclear-encoded tRNAs, whilst TRMT10B is the first m1A9-specific tRNA methyltransferase found in eukaryotes and is responsible for the modification of a single nuclear-encoded tRNA. Furthermore, we show that the lack of G9 methylation causes a decrease in the steady-state levels of the initiator tRNAiMet-CAT and an alteration in its further post-transcriptional modification. Our work finally clarifies the function of TRMT10A and TRMT10B in vivo and provides evidence that the loss of TRMT10A affects the pool of cytosolic tRNAs required for protein synthesis.


Assuntos
Metiltransferases/metabolismo , tRNA Metiltransferases/metabolismo , Sequência de Bases , Linhagem Celular , Humanos , Metilação , Metiltransferases/deficiência , Biossíntese de Proteínas , Purinas/metabolismo , RNA de Transferência/metabolismo
13.
RNA Biol ; 17(5): 731-742, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32070192

RESUMO

Bordetella pertussis, a strictly human re-emerging pathogen and the causative agent of whooping cough, exploits a broad variety of virulence factors to establish efficient infection. Here, we used RNA sequencing to analyse the changes in gene expression profiles of human THP-1 macrophages resulting from B. pertussis infection. In parallel, we attempted to determine the changes in intracellular B. pertussis-specific transcriptomic profiles resulting from interaction with macrophages. Our analysis revealed that global gene expression profiles in THP-1 macrophages are extensively rewired 6 h post-infection. Among the highly expressed genes, we identified those encoding cytokines, chemokines, and transcription regulators involved in the induction of the M1 and M2 macrophage polarization programmes. Notably, several host genes involved in the control of apoptosis and inflammation which are known to be hijacked by intracellular bacterial pathogens were overexpressed upon infection. Furthermore, in silico analyses identified large temporal changes in expression of specific gene subsets involved in signalling and metabolic pathways. Despite limited numbers of the bacterial reads, we observed reduced expression of majority of virulence factors and upregulation of several transcriptional regulators during infection suggesting that intracellular B. pertussis cells switch from virulent to avirulent phase and actively adapt to intracellular environment, respectively.


Assuntos
Bordetella pertussis/fisiologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Macrófagos/metabolismo , Transcriptoma , Coqueluche/genética , Coqueluche/virologia , Linhagem Celular , Células Cultivadas , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Coqueluche/imunologia
14.
RNA Biol ; 17(5): 663-676, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32041469

RESUMO

Archaeal genomes are densely packed; thus, correct transcription termination is an important factor for orchestrated gene expression. A systematic analysis of RNA 3´ termini, to identify transcription termination sites (TTS) using RNAseq data has hitherto only been performed in two archaea, Methanosarcina mazei and Sulfolobus acidocaldarius. In this study, only regions directly downstream of annotated genes were analysed, and thus, only part of the genome had been investigated. Here, we developed a novel algorithm (Internal Enrichment-Peak Calling) that allows an unbiased, genome-wide identification of RNA 3´ termini independent of annotation. In an RNA fraction enriched for primary transcripts by terminator exonuclease (TEX) treatment we identified 1,543 RNA 3´ termini. Approximately half of these were located in intergenic regions, and the remainder were found in coding regions. A strong sequence signature consistent with known termination events at intergenic loci indicates a clear enrichment for native TTS among them. Using these data we determined distinct putative termination motifs for intergenic (a T stretch) and coding regions (AGATC). In vivo reporter gene tests of selected TTS confirmed termination at these sites, which exemplify the different motifs. For several genes, more than one termination site was detected, resulting in transcripts with different lengths of the 3´ untranslated region (3´ UTR).


Assuntos
Regiões 3' não Traduzidas , Regulação da Expressão Gênica em Archaea , Haloferax volcanii/genética , RNA Arqueal/genética , Algoritmos , Análise por Conglomerados , Biologia Computacional/métodos , Genoma Arqueal , Genômica/métodos , Anotação de Sequência Molecular , Motivos de Nucleotídeos , Fases de Leitura Aberta , Óperon , Terminação da Transcrição Genética
15.
Nucleic Acids Res ; 48(6): 3286-3303, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31956894

RESUMO

The RNA-editing protein ADAR is essential for early development in the mouse. Genetic evidence suggests that A to I editing marks endogenous RNAs as 'self'. Today, different Adar knockout alleles have been generated that show a common phenotype of apoptosis, liver disintegration, elevated immune response and lethality at E12.5. All the Adar knockout alleles can be rescued by a concomitant deletion of the innate immunity genes Mavs or Ifih1 (MDA5), albeit to different extents. This suggests multiple functions of ADAR. We analyze AdarΔ7-9 mice that show a unique growth defect phenotype when rescued by Mavs. We show that AdarΔ7-9 can form a truncated, unstable, editing deficient protein that is mislocalized. Histological and hematologic analysis of these mice indicate multiple tissue- and hematopoietic defects. Gene expression profiling shows dysregulation of Rps3a1 and Rps3a3 in rescued AdarΔ7-9. Consistently, a distortion in 40S and 60S ribosome ratios is observed in liver cells. This dysregulation is also seen in AdarΔ2-13; Mavs-/- but not in AdarE861A/E861A; Ifih1-/- mice, suggesting editing-independent functions of ADAR in regulating expression levels of Rps3a1 and Rps3a3. In conclusion, our study demonstrates the importance of ADAR in post-natal development which cannot be compensated by ADARB1.


Assuntos
Adenosina Desaminase/genética , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon/genética , Proteínas Ribossômicas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Animais , Regulação da Expressão Gênica/genética , Fígado/metabolismo , Camundongos , Camundongos Knockout , Edição de RNA/genética , Proteínas de Ligação a RNA/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Deleção de Sequência/genética
16.
Nucleic Acids Res ; 47(20): 10894-10905, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31535128

RESUMO

RNA polymerase-binding RNA aptamers (RAPs) are natural RNA elements that control transcription in cis by directly contacting RNA polymerase. Many RAPs inhibit transcription by inducing Rho-dependent termination in Escherichia coli. Here, we studied the role of inhibitory RAPs (iRAPs) in modulation of antisense transcription (AT) using in silico and in vivo approaches. We revisited the antisense transcriptome in cells with impaired AT regulators (Rho, H-NS and RNaseIII) and searched for the presence of RAPs within antisense RNAs. Many of these RAPs were found at key genomic positions where they terminate AT. By exploring the activity of several RAPs both in a reporter system and in their natural genomic context, we confirmed their significant role in AT regulation. RAPs coordinate Rho activity at the antisense strand and terminate antisense transcripts. In some cases, they stimulated sense expression by alleviating ongoing transcriptional interference. Essentially, our data postulate RAPs as key determinants of Rho-mediated AT regulation in E. coli.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , RNA Antissenso/metabolismo , Transcrição Gênica , Regulação Bacteriana da Expressão Gênica
17.
Mol Cell ; 76(3): 485-499.e8, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31495563

RESUMO

Transcriptional responses to external stimuli remain poorly understood. Using global nuclear run-on followed by sequencing (GRO-seq) and precision nuclear run-on sequencing (PRO-seq), we show that CDK8 kinase activity promotes RNA polymerase II pause release in response to interferon-γ (IFN-γ), a universal cytokine involved in immunity and tumor surveillance. The Mediator kinase module contains CDK8 or CDK19, which are presumed to be functionally redundant. We implemented cortistatin A, chemical genetics, transcriptomics, and other methods to decouple their function while assessing enzymatic versus structural roles. Unexpectedly, CDK8 and CDK19 regulated different gene sets via distinct mechanisms. CDK8-dependent regulation required its kinase activity, whereas CDK19 governed IFN-γ responses through its scaffolding function (i.e., it was kinase independent). Accordingly, CDK8, not CDK19, phosphorylates the STAT1 transcription factor (TF) during IFN-γ stimulation, and CDK8 kinase inhibition blocked activation of JAK-STAT pathway TFs. Cytokines such as IFN-γ rapidly mobilize TFs to "reprogram" cellular transcription; our results implicate CDK8 and CDK19 as essential for this transcriptional reprogramming.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fibroblastos/efeitos dos fármacos , Interferon gama/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Fibroblastos/enzimologia , Fibroblastos/virologia , Células HCT116 , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , RNA Polimerase II/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Vesiculovirus/patogenicidade
18.
Genome Res ; 29(9): 1453-1463, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31427386

RESUMO

Pre-mRNA-splicing and adenosine to inosine (A-to-I) RNA-editing occur mostly cotranscriptionally. During A-to-I editing, a genomically encoded adenosine is deaminated to inosine by adenosine deaminases acting on RNA (ADARs). Editing-competent stems are frequently formed between exons and introns. Consistently, studies using reporter assays have shown that splicing efficiency can affect editing levels. Here, we use Nascent-seq and identify ∼90,000 novel A-to-I editing events in the mouse brain transcriptome. Most novel sites are located in intronic regions. Unlike previously assumed, we show that both ADAR (ADAR1) and ADARB1 (ADAR2) can edit repeat elements and regular transcripts to the same extent. We find that inhibition of splicing primarily increases editing levels at hundreds of sites, suggesting that reduced splicing efficiency extends the exposure of intronic and exonic sequences to ADAR enzymes. Lack of splicing factors NOVA1 or NOVA2 changes global editing levels, demonstrating that alternative splicing factors can modulate RNA editing. Finally, we show that intron retention rates correlate with editing levels across different brain tissues. We therefore demonstrate that splicing efficiency is a major factor controlling tissue-specific differences in editing levels.


Assuntos
Encéfalo/metabolismo , Edição de RNA , Precursores de RNA/genética , Análise de Sequência de RNA/métodos , Adenosina Desaminase/metabolismo , Processamento Alternativo , Animais , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Camundongos , Especificidade de Órgãos , Proteínas de Ligação a RNA/metabolismo , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica
19.
Int J Mol Sci ; 20(12)2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31238496

RESUMO

Bordetella pertussis is a Gram-negative strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Previously, we have shown that RNA chaperone Hfq is required for virulence of B. pertussis. Furthermore, microarray analysis revealed that a large number of genes are affected by the lack of Hfq. This study represents the first attempt to characterize the Hfq regulon in bacterial pathogen using an integrative omics approach. Gene expression profiles were analyzed by RNA-seq and protein amounts in cell-associated and cell-free fractions were determined by LC-MS/MS technique. Comparative analysis of transcriptomic and proteomic data revealed solid correlation (r2 = 0.4) considering the role of Hfq in post-transcriptional control of gene expression. Importantly, our study confirms and further enlightens the role of Hfq in pathogenicity of B. pertussis as it shows that Δhfq strain displays strongly impaired secretion of substrates of Type III secretion system (T3SS) and substantially reduced resistance to serum killing. On the other hand, significantly increased production of proteins implicated in transport of important metabolites and essential nutrients observed in the mutant seems to compensate for the physiological defect introduced by the deletion of the hfq gene.


Assuntos
Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Proteômica , Regulon , Cromatografia Líquida , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Fator Proteico 1 do Hospedeiro/metabolismo , Humanos , Proteoma , Proteômica/métodos , Espectrometria de Massas em Tandem , Transcriptoma , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
20.
Nucleic Acids Res ; 47(1): 3-14, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30462291

RESUMO

RNA modifications are present in all classes of RNAs. They control the fate of mRNAs by affecting their processing, translation, or stability. Inosine is a particularly widespread modification in metazoan mRNA arising from deamination of adenosine catalyzed by the RNA-targeting adenosine deaminases ADAR1 or ADAR2. Inosine is commonly thought to be interpreted as guanosine by cellular machines and during translation. Here, we systematically test ribosomal decoding using mass spectrometry. We show that while inosine is primarily interpreted as guanosine it can also be decoded as adenosine, and rarely even as uracil. Decoding of inosine as adenosine and uracil is context-dependent. In addition, mass spectrometry analysis indicates that inosine causes ribosome stalling especially when multiple inosines are present in the codon. Indeed, ribosome profiling data from human tissues confirm inosine-dependent ribosome stalling in vivo. To our knowledge this is the first study where decoding of inosine is tested in a comprehensive and unbiased way. Thus, our study shows novel, unanticipated functions for inosines in mRNAs, further expanding coding potential and affecting translational efficiency.


Assuntos
Código Genético , Inosina/genética , Biossíntese de Proteínas , Edição de RNA , RNA Mensageiro/genética , Adenosina/genética , Adenosina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Clonagem Molecular , Desaminação , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Guanosina/genética , Guanosina/metabolismo , Humanos , Inosina/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reticulócitos/química , Reticulócitos/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Uracila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA