Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 112(1): 101-115, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34738832

RESUMO

The Asian citrus psyllid (Diaphorina citri) is a pest of citrus and the primary insect vector of the bacterial pathogen, 'Candidatus Liberibacter asiaticus' (CLas), which is associated with citrus greening disease. The citrus relative Murraya paniculata (orange jasmine) is a host plant of D. citri but is more resistant to CLas compared with all tested Citrus genotypes. The effect of host switching of D. citri between Citrus medica (citron) and M. paniculata plants on the acquisition and transmission of CLas was investigated. The psyllid CLas titer and the proportion of CLas-infected psyllids decreased in the generations after transfer from CLas-infected citron to healthy M. paniculata plants. Furthermore, after several generations of feeding on M. paniculata, pathogen acquisition (20 to 40% reduction) and transmission rates (15 to 20% reduction) in psyllids transferred to CLas-infected citron were reduced compared with psyllids continually maintained on infected citron. Top-down (difference gel electrophoresis) and bottom-up (shotgun MS/MS) proteomics methods were used to identify changes in D. citri protein expression resulting from host plant switching between Citrus macrophylla and M. paniculata. Changes in expression of insect metabolism, immunity, and cytoskeleton proteins were associated with host plant switching. Both transient and sustained feeding on M. paniculata induced distinct patterns of protein expression in D. citri compared with psyllids reared on C. macrophylla. The results point to complex interactions that affect vector competence and may lead to strategies to control the spread of citrus greening disease.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Liberibacter , Doenças das Plantas , Proteoma , Espectrometria de Massas em Tandem
2.
Sci Rep ; 10(1): 18244, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106553

RESUMO

The Asian citrus psyllid (Diaphorina citri) transmits the bacterium 'Candidatus Liberibacter asiaticus' (CLas), which causes huanglongbing (citrus greening) disease, in a circulative-propagative manner. We compared CLas inoculation efficiency of D. citri nymphs and adults into healthy (uninfected) citron leaves when both vector stages were reared from eggs on infected plants. The proportion of CLas-positive leaves was 2.5% for nymphs and 36.3% for adults. CLas acquisition by early instar nymphs followed by dissections of adults and 4th instar nymphs revealed that CLas bacterium had moved into the head-thorax section (containing the salivary glands) in 26.7-30.0% of nymphs and 37-45% of adults. Mean Ct values in these sections were 31.6-32.9 and 26.8-27.0 for nymphs and adults, respectively. Therefore, CLas incidence and titer were higher in the head-thorax of adults than in nymphs. Our results suggest that following acquisition of CLas by early instar D. citri nymphs, emerging adults inoculate the bacteria into citrus more efficiently than nymphs because adults are afforded a longer latent period necessary for multiplication and/or translocation of CLas into the salivary glands of the vector. We propose that CLas uses D. citri nymphs mainly for pathogen acquisition and multiplication, and their adults mainly for pathogen inoculation and spread.


Assuntos
Citrus/microbiologia , Hemípteros/fisiologia , Interações Hospedeiro-Patógeno , Ninfa/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Rhizobiaceae/patogenicidade , Animais , Citrus/parasitologia , Doenças das Plantas/parasitologia , Folhas de Planta/parasitologia
3.
Insects ; 11(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32284515

RESUMO

Asian citrus psyllid, Diaphorina citri, transmits Candidatus Liberibacter asiaticus (CLas), the putative causal agent of Huanglongbing disease. Although they primarily feed on the phloem of Citrus and related plants, when grove or host conditions are unfavorable, D. citri may be able to use weed species as alternate food sources for survival. To explore this possibility, electrical penetration graph (EPG) recordings (18 h) were performed to investigate the feeding behavior of psyllid adults and nymphs on three common south Florida weeds (Bidens alba, Eupatorium capillifolium, and Ludwigia octovalvis). EPG recordings revealed that the proportion of time spent by D. citri feeding on xylem was similar on all tested weed species (19%-22%) and on the positive control (20%), the preferred host, Citrus macrophylla. Very little to no phloem feeding was observed on weed species by either nymphs or adults. Histological studies using epifluorescence microscopy showed that salivary sheaths were branched and extended into xylem of weed species, whereas they ended in phloem on citrus plants. No choice behavioral assays showed that adults can obtain some nutrition by feeding on weed species (xylem feeding) and they may be able to survive on them for short intervals, when host conditions are unfavorable.

4.
Insects ; 10(12)2019 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771154

RESUMO

Huanglongbing, the most destructive citrus disease worldwide, is caused by the bacterium 'Candidatus Liberibacter asiaticus' (CLas) and is vectored by the Asian citrus psyllid (ACP). Very little is known about the form and distribution of CLas in infected psyllids, especially at the ultrastructural level. Here, we examined these aspects by transmission electron microscopy, combined with immunogold labeling. In CLas-exposed ACP adults, the CLas bacterial cells were found to be pleomorphic taking tubular, spherical, or flask-shaped forms, some of which seemed to divide further. Small or large aggregates of CLas were found in vacuolated cytoplasmic pockets of most ACP organs and tissues examined, including the midgut, filter chamber, hindgut, Malpighian tubules, and secretory cells of the salivary glands, in addition to fat tissues, epidermis, muscle, hemocytes, neural tissues, bacteriome, and walls of the female spermatheca and oviduct. Large aggregates of CLas were found outside the midgut within the filter chamber and between the sublayers of the basal lamina of the hindgut and Malpighian tubules. Novel intracytoplasmic structures that we hypothesized as 'putative CLas multiplication sites' were found in the cells of the midgut, salivary glands, and other tissues in CLas-exposed ACP. These structures, characterized by containing a granular matrix and closely packed bacterial cells, were unbound by membranes and were frequently associated with rough endoplasmic reticulum. Our results point to the close association between CLas and its psyllid vector, and provide support for a circulative-propagative mode of transmission.

5.
PLoS One ; 13(10): e0204984, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30296296

RESUMO

Aphids are an attractive food source to many predators and parasitoids because of their small size, soft bodies and slow movement. To combat predation, aphids evolved both behavioral and chemical defensive mechanisms that are operated via siphunculi (cornicles), differently developed structures that more or less extend from their abdomen. Although both direct and indirect linkages between siphunculi and their defensive mechanisms have been explored, their ultimate effects on aphid fitness are still broadly debated. To explicitly test the influence of siphunculi on brown citrus aphid, Aphis (Toxoptera) citricida (Kirkaldy), fitness, we razor-cut and laser-sealed the siphunculi. Siphunculi removal resulted in two distinct behavior modifications, (false aggregation and increased drop-off rates) that led to decreased survival and the loss of the ability to right themselves from an inverted position. These results together indicate that siphunculi play an important role in survival, and removal of these organs will have negative effect on aphid fitness. Furthermore, results suggested that released alarm pheromone may play an important role in communication among aphid clone-mate, and omitting it results in miscommunication and competition among clonemates. These findings will help in better understanding the aphid biology.


Assuntos
Afídeos/metabolismo , Animais , Afídeos/anatomia & histologia , Afídeos/química , Antenas de Artrópodes/cirurgia , Evolução Biológica , Cromatografia Gasosa-Espectrometria de Massas , Terapia a Laser , Longevidade , Microscopia Eletrônica de Varredura , Feromônios/análise , Microtomografia por Raio-X
6.
J Microsc Ultrastruct ; 6(3): 129-133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30221138

RESUMO

BACKGROUND: Salivary sheaths, also known as stylet sheaths or stylet tracks, are essential features of the piercing-sucking feeding mechanism of plant-feeding hemipteran insects, many of which are vectors of economically important plant viral and bacterial pathogens. Although knowledge of their structure and function is incomplete, these salivary sheaths are frequently used by researchers to study hemipteran's feeding behavior, host preference, or host resistance, because these sheaths remain in the plant tissues after the insect withdraws its stylets following its feeding or probing on these tissues. However, in most cases, it is not known how long these salivary sheaths may last in plant tissues after their deposition by the feeding insects. An earlier report suggested that the salivary sheaths of the Asian citrus psyllid, Diaphorina citri (Hemiptera, Liviidae), vector of the devastating huanglongbing (citrus greening) disease bacterium, start to dissipate 1 week after their deposition in citrus leaves. METHODS AND RESULTS: Here, using epifluorescence microscopy of cross sections in citron leaves, we found that D. citri salivary sheaths show signs of degradation in 3-4 weeks and become mostly degraded by 5-6 weeks, following their deposition by the psyllids into citrus tissues. Degradation of the salivary sheath starts at or near the "flange" area close to the leaf surface and continues gradually inward through the intercellular part of the sheath, within the mesophyll tissue, but apparently does not extend to the deeper or intracellular parts of the sheath in or near the phloem. Staining citron leaf sections with the fluorescent stain calcofluor white, which stains fungi, or propidium iodide (DNA/RNA stain) suggested that the degraded parts of the older salivary sheaths are not associated with fungi or bacterial accumulations. CONCLUSION: We speculate that degradation of the salivary sheaths may be due to enzymatic activities in the host plant, especially in the extracellular matrix of the mesophyll tissue.

7.
J Microsc Ultrastruct ; 6(1): 56-63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30023267

RESUMO

BACKGROUND AND SIGNIFICANCE: Foliar trichomes (tiny hair-like structures) are part of the plant defense mechanisms that may confer resistance to some herbivore pests. Trifoliate orange, Poncirus trifoliata, is a genotype resistant to infestations by the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), vector of the economically important citrus greening (huanglongbing) disease bacterium. We discovered that dense trichomes are associated with young leaves of trifoliate orange plants and hypothesized that these might be responsible for reduced infestation by this psyllid. MATERIALS AND METHODS: Epifluorescence and stereomicroscopy were used to study the density and structure of trichomes associated with young flush leaves and stems of trifoliate orange and of five other plant genotypes that are highly susceptible to colonization by the psyllid: lemon, grapefruit, sweet orange, curry leaf, and orange jasmine. RESULTS: Simple unicellular trichomes were observed at moderate-to-large densities on young leaves and stems of each genotype except lemon and sweet orange, which had considerably fewer trichomes. Trichomes were generally abundant on young leaves of curry leaf and orange jasmine, two genotypes that are often heavily colonized by the psyllid. Although we did not quantify oviposition rates on these genotypes, we observed that psyllid females deposited eggs on young leaves, buds, and stems regardless of the density of trichomes present, sometimes directly within or close to a dense bed of trichomes. CONCLUSIONS: While trichomes were moderately abundant on young leaves of trifoliate orange, our results strongly suggest that these trichomes may play little or no role in reduced colonization by the psyllid on this genotype.

8.
Sci Rep ; 8(1): 10352, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985396

RESUMO

Citrus greening disease (huanglongbing), currently the most destructive citrus disease worldwide, is putatively caused by Candidatus Liberibacter asiaticus (CLas), a phloem-limited bacterium transmitted by the Asian citrus psyllid Diaphorina citri. Electrical penetration graph (EPG) recordings over 42 h were performed to compare the feeding behavior of D. citri adults and 4th or 5th instar nymphs feeding on CLas-infected or healthy citron plants. Nymphs performed more individual bouts of phloem ingestion (E2) and recorded longer phloem ingestion total time compared with adults, whereas adults performed more bouts of xylem ingestion (G) and recorded greater total time of xylem ingestion compared with nymphs. Quantitative polymerase chain reaction tests indicated that 58% of nymphs and 6% of adults acquired CLas during the 42 h EPG-recorded feeding on infected plants. In a histological study, a greater proportion of salivary sheaths produced by nymphs were branched compared to those of the adults. Our results strongly suggest that more bouts and longer feeding time in the phloem by nymphs may explain their more efficient CLas acquisition from infected plants compared to adults. This is the first EPG study comparing nymphs and adults of D. citri on healthy and infected citrus plants in relation to CLas acquisition.


Assuntos
Citrus/microbiologia , Hemípteros/fisiologia , Floema/metabolismo , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Animais , Citrus/crescimento & desenvolvimento , Eletricidade , Comportamento Alimentar , Hemípteros/crescimento & desenvolvimento , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Microscopia de Fluorescência , Ninfa/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Rhizobiaceae/isolamento & purificação
9.
PLoS One ; 13(4): e0195804, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29652934

RESUMO

Genetic variability in insect vectors is valuable to study vector competence determinants and to select non-vector populations that may help reduce the spread of vector-borne pathogens. We collected and tested vector competency of 15 isofemale lines of Asian citrus psyllid, Diaphorina citri, vector of 'Candidatus Liberibacter asiaticus' (CLas). CLas is associated with huanglongbing (citrus greening), the most serious citrus disease worldwide. D. citri adults were collected from orange jasmine (Murraya paniculata) hedges in Florida, and individual pairs (females and males) were caged on healthy Murraya plants for egg laying. The progeny from each pair that tested CLas-negative by qPCR were maintained on Murraya plants and considered an isofemale line. Six acquisition tests on D. citri adults that were reared as nymphs on CLas-infected citrus, from various generations of each line, were conducted to assess their acquisition rates (percentage of qPCR-positive adults). Three lines with mean acquisition rates of 28 to 32%, were classified as 'good' acquirers and three other lines were classified as 'poor' acquirers, with only 5 to 8% acquisition rates. All lines were further tested for their ability to inoculate CLas by confining CLas-exposed psyllids for one week onto healthy citrus leaves (6-10 adults/leaf/week), and testing the leaves for CLas by qPCR. Mean inoculation rates were 19 to 28% for the three good acquirer lines and 0 to 3% for the three poor acquirer lines. Statistical analyses indicated positive correlations between CLas acquisition and inoculation rates, as well as between CLas titer in the psyllids and CLas acquisition or inoculation rates. Phenotypic and molecular characterization of one of the good and one of the poor acquirer lines revealed differences between them in color morphs and hemocyanin expression, but not the composition of bacterial endosymbionts. Understanding the genetic architecture of CLas transmission will enable the development of new tools for combating this devastating citrus disease.


Assuntos
Citrus/microbiologia , Hemípteros/microbiologia , Hemípteros/fisiologia , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae , Animais , Feminino , Masculino , Simbiose
10.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29311247

RESUMO

"Candidatus Liberibacter asiaticus" is the causative bacterium associated with citrus greening disease. "Ca Liberibacter asiaticus" is transmitted by Diaphorina citri more efficiently when it is acquired by nymphs rather than adults. Why this occurs is not known. We compared midguts of D. citri insects reared on healthy or "Ca Liberibacter asiaticus"-infected citrus trees using quantitative PCR, confocal microscopy, and mitochondrial superoxide staining for evidence of oxidative stress. Consistent with its classification as propagative, "Ca Liberibacter asiaticus" titers were higher in adults than in nymphs. Our previous work showed that adult D. citri insects have basal levels of karyorrhexis (fragmentation of the nucleus) in midgut epithelial cells, which is increased in severity and frequency in response to "Ca Liberibacter asiaticus." Here, we show that nymphs exhibit lower levels of early-stage karyorrhexis than adults and are refractory to the induction of advanced karyorrhexis by "Ca Liberibacter asiaticus" in the midgut epithelium. MitoSox Red staining showed that guts of infected adults, particularly males, experienced oxidative stress in response to "Ca Liberibacter asiaticus." A positive correlation between the titers of "Ca Liberibacter asiaticus" and the Wolbachia endosymbiont was observed in adult and nymph midguts, suggesting an interplay between these bacteria during development. We hypothesize that the resistance of the nymph midgut to late-stage karyorrhexis through as yet unknown molecular mechanisms benefits "Ca Liberibacter asiaticus" for efficient invasion of midgut epithelial cells, which may be a factor explaining the developmental dependency of "Ca Liberibacter asiaticus" acquisition by the vector.


Assuntos
Células Epiteliais/microbiologia , Hemípteros/microbiologia , Ninfa/microbiologia , Rhizobiaceae/fisiologia , Animais , Feminino , Microbioma Gastrointestinal , Hibridização in Situ Fluorescente , Masculino , Microscopia Confocal , Estresse Oxidativo , Fenótipo
11.
PLoS One ; 12(3): e0173520, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278248

RESUMO

Asian citrus psyllid (Diaphorina citri) feeding behaviors play a significant role in the transmission of the phloem-limited Candidatus Liberibacter asiaticus (CLas) bacterium that causes the economically devastating citrus greening disease. Sustained phloem ingestion by D. citri on CLas infected plants is required for pathogen acquisition and transmission. Recent studies have shown a fibrous ring of thick-walled sclerenchyma around the phloem in mature, fully expanded citrus leaves that is more prominent on the abaxial compared with the adaxial side. The composition and thickness of this fibrous ring may have an important role in selection of feeding sites by D. citri based on leaf age and leaf surface, which in turn can affect pathogen acquisition and transmission. We measured feeding behavior using electrical penetration graph (EPG) recordings of individual D. citri adults placed on abaxial or adaxial surfaces of young or mature Valencia orange leaves to study the role of the sclerenchymatous ring in modifying D. citri feeding behavior. Feeding sites on the same leaf tissues were then sectioned and examined by epifluorescence microscopy. The duration of phloem ingestion (E2 waveform) by psyllids was significantly reduced on mature compared with young leaves, and on abaxial compared with adaxial leaf surfaces. The longest duration of phloem ingestion was observed from psyllids placed on the adaxial side of young leaves that had the least developed sclerenchyma. Bouts of phloem salivation (E1 waveform), however, were significantly longer on mature leaves compared with young leaves. D. citri adults made consecutive phloem feeding attempts (bouts) on the abaxial side of mature leaves and those bouts resulted in unsuccessful or shorter periods of phloem ingestion. Adults also made more frequent and longer bouts of xylem ingestion on mature leaves compared with adult psyllids placed on young leaves. Epifluorescence microscopy showed that the fibrous ring in young leaves was thinner and autofluoresced in red whereas the ring in mature leaves was thicker and autofluoresced in blue, indicating changes in structure and composition (e.g., lignification) of sclerenchyma correlated with leaf age. Our results support the hypothesis that the presence of a thick, well-developed fibrous ring around phloem tissues of mature leaves acts as a barrier to frequent or prolonged phloem ingestion by D. citri from citrus leaves. This may have an important role in limiting or preventing CLas acquisition and/or transmission by D. citri, and could be used for identification and development of resistant citrus cultivars.


Assuntos
Citrus/citologia , Citrus/fisiologia , Eletricidade , Hemípteros/anatomia & histologia , Insetos Vetores/anatomia & histologia , Floema/citologia , Floema/fisiologia , Animais , Citrus/microbiologia , Comportamento Alimentar , Hemípteros/microbiologia , Hemípteros/fisiologia , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia , Microscopia , Doenças das Plantas/microbiologia , Folhas de Planta/citologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Xilema/citologia , Xilema/fisiologia
12.
J Microsc Ultrastruct ; 5(1): 9-20, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30023232

RESUMO

The Asian citrus psyllid (ACP, Diaphorina citri, Hemiptera: Liviidae) is the principal vector of Candidatus Liberibacter asiaticus (Las), the putative bacterial agent of citrus greening/huanglongbing (HLB); currently the most serious citrus disease worldwide. Las is transmitted in a persistent-propagative manner by ACP, and the salivary glands and midgut have been suggested as transmission barriers that can impede translocation of Las within the vector. However, no detailed ultrastructural studies have been reported on these organs in this or other psyllid species, although some bacterium-like structures have been described in them and assumed to be the causal agents of HLB. In this study, we describe the ultrastructure of the salivary glands, filter chamber, other parts of the alimentary canal, and other organs and tissues of ACP including the compound ganglionic mass (in the thorax) and the bacteriome (in the abdomen). Furthermore, in addition to two ultrastructurally apparently different symbiotic bacteria found in the bacteriome, other morphological types of bacteria were found in the gut epithelial cells and salivary glands of both Las-infected (quantitative polymerase chain reaction positive) and noninfected (quantitative polymerase chain reaction negative) ACP. These results show the importance of immunolabeling, fluorescence in situ hybridization, or other labeling techniques that must be used before identifying any bacterium-like structures in ACP or other vectors as Las or other possible agents of HLB. This ultrastructural investigation should help future work on the cellular and subcellular aspects of pathogen-psyllid relationships, including the study of receptors, binding sites, and transmission barriers of Las and other pathogens within their psyllid vectors.

13.
PLoS One ; 11(7): e0159594, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27441694

RESUMO

The Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), is the primary vector of Candidatus Liberibacter asiaticus (Las) implicated as causative agent of citrus huanglongbing (citrus greening), currently the most serious citrus disease worldwide. Las is transmitted by D. citri in a persistent-circulative manner, but the question of replication of this bacterium in its psyllid vector has not been resolved. Thus, we studied the effects of the acquisition access period (AAP) by nymphs and adults of D. citri on Las acquisition, multiplication and inoculation/transmission. D. citri nymphs or adults (previously non-exposed to Las) were caged on Las-infected citrus plants for an AAP of 1, 7 or 14 days. These 'Las-exposed' psyllids were then transferred weekly to healthy citrus or orange jasmine plants, and sampled via quantitative polymerase chain reaction (qPCR) analysis 1-42 days post-first access to diseased plants (padp); all tested nymphs became adults 7-14 days padp. Our results indicate that following 1 or 7 day AAP as nymphs 49-59% of Las-exposed psyllids became Las-infected (qPCR-positive), whereas only 8-29% of the psyllids were infected following 1-14 day AAP as adults. Q-PCR analysis also indicated that Las titer in the Las-exposed psyllids (relative to that of the psyllid S20 ribosomal protein gene) was: 1) significantly higher, and increasing at a faster rate, following Las acquisition as nymphs compared to that following Las acquisition as adults; 2) higher as post-acquisition time of psyllids on healthy plants increased reaching a peak at 14-28 days padp for nymphs and 21-35 days padp for adults, with Las titer decreasing or fluctuating after that; 3) higher with longer AAP on infected plants, especially with acquisition as adults. Our results strongly suggest that Las multiplies in both nymphs and adults of D. citri but attains much higher levels in a shorter period of time post-acquisition when acquired by nymphs than when acquired by adults, and that adults may require longer access to infected plants compared to nymphs for Las to reach higher levels in the vector. However, under the conditions of our experiments, only D. citri that had access to infected plants as nymphs were able to inoculate Las into healthy citrus seedlings or excised leaves. The higher probability of Las inoculation into citrus by psyllids when they have acquired this bacterium from infected plants during the nymphal rather than the adult stage, as reported by us and others, has significant implications in the epidemiology and control of this economically important citrus disease.


Assuntos
Citrus/microbiologia , Citrus/parasitologia , Hemípteros/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Rhizobiaceae/fisiologia , Análise de Variância , Animais , Distribuição de Qui-Quadrado , Ninfa/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
14.
J Econ Entomol ; 108(2): 399-404, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26470150

RESUMO

The Asian citrus psyllid (Diaphorina citri Kuwayama) is the principal vector of 'Candidatus Liberibacter asiaticus' (CLas) associated with huanglongbing (HLB), the most serious citrus disease worldwide. New control measures including pesticides are urgently needed to combat HLB, especially to protect young or newly planted citrus trees from CLas-inoculation by vector psyllids. Here, we tested CLas-inoculation by D. citri adults (CLas-exposed, reared on infected plants) by feeding them for 7 d on excised healthy citrus leaves with dry residues of cyantraniliprole (Exirel), a novel insecticide, in comparison with fenpropathrin (Danitol 2.4EC), an insecticide commonly used against D. citri. Fewer adults settled (putatively feeding or probing) on leaves treated with cyantraniliprole than those treated with fenpropathrin or water controls. Also, psyllid adults died at a slower rate on leaves treated with cyantraniliprole than those treated with fenpropathrin, although the final cumulative mortality did not differ between the two treatments. In quantitative real-time polymerase chain reaction tests, 59.0-65.3% of the CLas-exposed psyllid adults were proven to be CLas-positive. Inoculation rates of CLas (using 10 adults per leaf) into untreated healthy citrus leaves (47.5-85%) were significantly higher than rates into leaves treated with cyantraniliprole or fenpropathrin (2.5-12.5%). Reduced inoculation rates to leaves treated with cyantraniliprole probably occurred as a result of reduced feeding or probing by D. citri. The excised leaf assay method, which took only a few weeks compared with up to a year or longer using whole plants, can be an effective tool for testing the effect of new pesticides or other treatments in reducing CLas inoculation or transmission by psyllid vectors.


Assuntos
Citrus/microbiologia , Hemípteros/microbiologia , Pirazóis , ortoaminobenzoatos , Animais , Doenças das Plantas , Piretrinas , Testes de Toxicidade
15.
PLoS One ; 10(3): e0121354, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793934

RESUMO

The melaleuca psyllid, Boreioglycaspis melaleucae (Hemiptera: Psyllidae), was introduced to Florida as a biological control agent against Melaleuca quinquenervia, an invasive evergreen tree that has invaded large areas of Florida Everglades. Colonies of B. melaleucae nymphs are normally covered by white waxy secretions, and nymphs of various instars produce long bundles of white waxy filaments extending laterally and posteriorly from their abdomen. Scanning electron microscopy of 'naturally waxed' and 'dewaxed' nymphs (cleaned from wax) revealed two types of wax pore plates located dorsally and laterally on the integument of posterior abdominal segments starting with the 4th segment. Type-1 wax pore plates, with raised rim, peripheral groove, slits and pits, produce long ribbons and filaments of waxy secretions that are wound together forming long wax bundles, whereas type-2 wax pore plates, with slits only, produce shorter wax curls. Additionally, in both nymphs and adult females, the circumanal ring contained ornate rows of wax pores that produce wax filaments covering their honeydew excretions. Video recordings with stereomicroscopy showed that adult females produce whitish honeydew balls, powerfully propelled away from their body, probably to get these sticky excretions away from their eggs and newly hatched nymphs. Adult males, however, produce clear droplets of honeydew immediately behind them, simply by bending the posterior end of the abdomen downward. The possible role(s) of waxy secretions by nymphs and adults of B. melaleucae in reducing contamination of their colonies with honeydew, among other possibilities, are discussed.


Assuntos
Comportamento Animal , Hemípteros/anatomia & histologia , Hemípteros/ultraestrutura , Tegumento Comum/anatomia & histologia , Melaleuca/parasitologia , Ceras/metabolismo , Animais , Feminino , Masculino , Ninfa/ultraestrutura , Oviposição
16.
PLoS One ; 9(10): e110919, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25343712

RESUMO

The Asian citrus psyllid (ACP, Diaphorina citri, Hemiptera: Liviidae), is the principal vector of the phloem-limited bacteria strongly associated with huanglongbing (HLB), the world's most serious disease of citrus. Host plant resistance may provide an environmentally safe and sustainable method of controlling ACP and/or HLB. Two xCitroncirus accessions (hybrids of Poncirus trifoliata and Citrus spp.), that are relatively resistant (UN-3881) or relatively susceptible (Troyer-1459) to ACP adults with regard to adult longevity, were compared in relation to ACP feeding behavior and some structural features of the leaf midrib. The settling (putative feeding/probing) sites of ACP adults on various parts of the leaf were not influenced primarily by plant accession. However, fewer ACP stylet sheaths were found in the midrib and fewer stylet sheath termini reached the vascular bundle (phloem and/or xylem) in UN-3881 compared to Troyer-1459 plants. Furthermore, in midribs of UN-3881 leaves the fibrous ring (sclerenchyma) around the phloem was significantly wider (thicker) compared to that in midribs of Troyer-1459 leaves. Our data indicate that feeding and/or probing by ACP adults into the vascular bundle is less frequent in the more resistant (UN-3881) than in the more susceptible (Troyer-1459) accessions. Our results also suggest that the thickness of the fibrous ring may be a barrier to stylet penetration into the vascular bundle, which is important for successful ACP feeding on the phloem and for transmitting HLB-associated bacteria. These results may help in the development of citrus plants resistant to ACP, which in turn could halt or slow the spread of the HLB-associated bacteria by this vector.


Assuntos
Citrus/parasitologia , Hemípteros/crescimento & desenvolvimento , Hemípteros/parasitologia , Doenças das Plantas/parasitologia , Envelhecimento , Animais , Comportamento Animal , Resistência à Doença , Comportamento Alimentar , Microscopia de Fluorescência , Modelos Biológicos , Floema/parasitologia , Folhas de Planta/parasitologia
17.
PLoS One ; 8(6): e64938, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762268

RESUMO

The Asian citrus psyllid (ACP), Diaphorina citri (Hemiptera: Psyllidae) is the primary vector of the bacterium causing citrus huanglongbing (citrus greening), the most serious disease of citrus worldwide. Psyllids and other hemipterans produce large amounts of honeydew, which has been used previously as an indicator of phloem sap composition and insect feeding or metabolism. Behavioral, ultrastructural and chemical studies on ACP, its honeydew and waxy secretions showed important differences between nymphs, males and females, and suggested some mechanisms by which the psyllids, especially nymphs and adult females, can minimize their contamination with honeydew excretions. The anal opening in ACP, near the posterior end of the abdomen, is on the ventral side in nymphs and on the dorsal side in adult males and females. Video recordings showed that adult males produce clear sticky droplets of honeydew gently deposited behind their body on the leaf surface, whereas adult females produce whitish honeydew pellets powerfully propelled away from the female body, probably to get their excretions away from eggs and newly hatched nymphs. ACP nymphs produce long ribbons or tubes of honeydew that frequently stay attached to the exuviae after molting, or drop when feeding on the lower side of citrus leaves. Furthermore, honeydew excretions of both nymphs and adult females are covered with a thin layer of whitish waxy material ultrastructurally composed of a convoluted network of long fine filaments or ribbons. This material is extruded from intricate arrays of wax pores in the circumanal ring (around the anus) that is found in nymphs and females but not in males of ACP or other psyllid species. Infrared microscopy and mass spectroscopy revealed that, in addition to various sugars, honeydew excretions of ACP nymphs and females are covered with a thin layer of wax similar in profile to ester waxes.


Assuntos
Sacos Anais/fisiologia , Comportamento Animal , Secreções Corporais/química , Citrus/microbiologia , Hemípteros/fisiologia , Sacos Anais/ultraestrutura , Animais , Feminino , Cadeia Alimentar , Interações Hospedeiro-Patógeno , Masculino , Microscopia Eletrônica de Varredura , Ninfa , Espectrofotometria Infravermelho
18.
PLoS One ; 8(4): e62444, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23638086

RESUMO

Stylet sheath formation is a common feature among phytophagous hemipterans. These sheaths are considered essential to promote a successful feeding event. Stylet sheath compositions are largely unknown and their mode of solidification remains to be elucidated. This report demonstrates the formation and solidification of in aere (in air) produced stylet sheaths by six hemipteran families: Diaphorina citri (Psyllidae, Asian citrus psyllid), Aphis nerii (Aphididae, oleander/milkweed aphid), Toxoptera citricida (Aphididae, brown citrus aphid), Aphis gossypii (Aphididae, cotton melon aphid), Bemisia tabaci biotype B (Aleyrodidae, whitefly), Homalodisca vitripennis (Cicadellidae, glassy-winged sharpshooter), Ferrisia virgata (Pseudococcidae, striped mealybug), and Protopulvinaria pyriformis (Coccidae, pyriform scale). Examination of in aere produced stylet sheaths by confocal and scanning electron microscopy shows a common morphology of an initial flange laid down on the surface of the membrane followed by continuous hollow core structures with sequentially stacked hardened bulbous droplets. Single and multi-branched sheaths were common, whereas mealybug and scale insects typically produced multi-branched sheaths. Micrographs of the in aere formed flanges indicate flange sealing upon stylet bundle extraction in D. citri and the aphids, while the B. tabaci whitefly and H. vitripennis glassy-winged sharpshooter flanges remain unsealed. Structural similarity of in aere sheaths are apparent in stylet sheaths formed in planta, in artificial diets, or in water. The use of 'Solvy', a dissolvable membrane, for intact stylet sheath isolation is reported. These observations illustrate for the first time this mode of stylet sheath synthesis adding to the understanding of stylet sheath formation in phytophagous hemipterans and providing tools for future use in structural and compositional analysis.


Assuntos
Comportamento Alimentar , Hemípteros/fisiologia , Animais , Hemípteros/anatomia & histologia , Hemípteros/ultraestrutura
19.
PLoS One ; 8(3): e59914, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555830

RESUMO

The Asian citrus psyllid (ACP), Diaphorina citri (Hemiptera: Psyllidae), is the primary vector of the phloem-limited bacterium Candidatus Liberibacter asiaticus (LAS) associated with huanglongbing (HLB, citrus greening), considered the world's most serious disease of citrus. Stylet morphometrics of ACP nymphs and adults were studied in relation to citrus vein structure and to their putative (histologically verified) feeding sites on Valencia orange leaves. ACP nymphs preferred to settle and feed on the lower (abaxial) side of young leaves either on secondary veins or on the sides of the midrib, whereas adults preferred to settle and feed on the upper (adaxial) or lower secondary veins of young or old leaves. Early instar nymphs can reach and probe the phloem probably because the distance to the phloem is considerably shorter in younger than in mature leaves, and is shorter from the sides of the midrib compared to that from the center. Additionally, the thick-walled 'fibrous ring' (sclerenchyma) around the phloem, which may act as a barrier to ACP stylet penetration into the phloem, is more prominent in older than in younger leaves and in the center than on the sides of the midrib. The majority (80-90%) of the salivary sheath termini produced by ACP nymphs and adults that reached a vascular bundle were associated with the phloem, whereas only 10-20% were associated with xylem vessels. Ultrastructural studies on ACP stylets and LAS-infected leaves suggested that the width of the maxillary food canal in first instar nymphs is wide enough for LAS bacteria to traverse during food ingestion (and LAS acquisition). However, the width of the maxillary salivary canal in these nymphs may not be wide enough to accommodate LAS bacteria during salivation (and LAS inoculation) into host plants. This may explain the inability of early instar nymphs to transmit LAS/HLB in earlier reports.


Assuntos
Citrus/anatomia & histologia , Hemípteros/fisiologia , Folhas de Planta/anatomia & histologia , Animais , Comportamento Animal , Citrus/fisiologia , Comportamento Alimentar , Hemípteros/microbiologia , Microscopia Eletrônica , Ninfa/fisiologia , Ninfa/ultraestrutura , Floema/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/fisiologia , Saliva/metabolismo , Xilema/fisiologia
20.
J Econ Entomol ; 106(1): 25-35, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23448011

RESUMO

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the primary vector of Candidatus Liberibacter asiaticus (Las) associated with huanglongbing, or citrus greening, the most devastating citrus (Citrus spp.) disease worldwide. Here, we developed a new "excised-leaf assay" that can speed up Las-inoculativity tests on Asian citrus psyllid from the current 3-12 mo (when using whole citrus seedlings for inoculation) to only 2-3 wk. Young adults of Asian citrus psyllid that had been reared on Las-infected plants were caged on excised healthy sweet orange [Citrus sinensis (L.) Osbeck] leaves for a 1-2-wk inoculation access periods (IAP), and then both psyllids and leaves were tested later by quantitative polymerase chain reaction (PCR). When single adults were tested per leaf, percentages of Las-positive leaves averaged 2-6% by using HLBaspr primers and 10-20% by using the more sensitive LJ900 primers. Higher proportions of Las-positive leaves were obtained with 1) higher densities of inoculating psyllids (5-10 adults per leaf), 2) longer IAPs, and 3) incubation of leaves for 1 wk postinoculation before PCR. Logistic regression analysis indicated a positive correlation between Las titer in Asian citrus psyllid adults tested singly and the probability of detecting Las in the inoculated leaves, correlations that can be very useful in epidemiological studies. Comparison between excised leaves and whole seedlings, inoculated consecutively for 1 wk each by one or a group of psyllids, indicated no significant difference between Las detection in excised leaves or whole plants. This new excised-leaf assay method saves considerable time, materials, and greenhouse space, and it may enhance vector relation and epidemiological studies on Las and potentially other Liberibacter spp. associated with huanglongbing disease.


Assuntos
Citrus/microbiologia , Hemípteros/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Rhizobiaceae/fisiologia , Animais , Primers do DNA , Feminino , Modelos Logísticos , Masculino , Plântula/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA