Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 1307, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795381

RESUMO

The domestication and subsequent development of sheep are crucial events in the history of human civilization and the agricultural revolution. However, the impact of interspecific introgression on the genomic regions under domestication and subsequent selection remains unclear. Here, we analyze the whole genomes of domestic sheep and their wild relative species. We found introgression from wild sheep such as the snow sheep and its American relatives (bighorn and thinhorn sheep) into urial, Asiatic and European mouflons. We observed independent events of adaptive introgression from wild sheep into the Asiatic and European mouflons, as well as shared introgressed regions from both snow sheep and argali into Asiatic mouflon before or during the domestication process. We revealed European mouflons might arise through hybridization events between a now extinct sheep in Europe and feral domesticated sheep around 6000-5000 years BP. We also unveiled later introgressions from wild sheep to their sympatric domestic sheep after domestication. Several of the introgression events contain loci with candidate domestication genes (e.g., PAPPA2, NR6A1, SH3GL3, RFX3 and CAMK4), associated with morphological, immune, reproduction or production traits (wool/meat/milk). We also detected introgression events that introduced genes related to nervous response (NEURL1), neurogenesis (PRUNE2), hearing ability (USH2A), and placental viability (PAG11 and PAG3) into domestic sheep and their ancestral wild species from other wild species.


Assuntos
Domesticação , Fluxo Gênico , Filogenia , Seleção Genética , Ovinos/genética , Animais , Carneiro da Montanha/genética , Carneiro Doméstico/genética , Sequenciamento Completo do Genoma
2.
Commun Biol ; 4(1): 1170, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620965

RESUMO

Reindeer (Rangifer tarandus) are semi-domesticated animals adapted to the challenging conditions of northern Eurasia. Adipose tissues play a crucial role in northern animals by altering gene expression in their tissues to regulate energy homoeostasis and thermogenic activity. Here, we perform transcriptome profiling by RNA sequencing of adipose tissues from three different anatomical depots: metacarpal (bone marrow), perirenal, and prescapular fat in Finnish and Even reindeer (in Sakha) during spring and winter. A total of 16,212 genes are expressed in our data. Gene expression profiles in metacarpal tissue are distinct from perirenal and prescapular adipose tissues. Notably, metacarpal adipose tissue appears to have a significant role in the regulation of the energy metabolism of reindeer in spring when their nutritional condition is poor after winter. During spring, genes associated with the immune system are upregulated in the perirenal and prescapular adipose tissue. Blood and tissue parameters reflecting general physiological and metabolic status show less seasonal variation in Even reindeer than in Finnish reindeer. This study identifies candidate genes potentially involved in immune response, fat deposition, and energy metabolism and provides new information on the mechanisms by which reindeer adapt to harsh arctic conditions.


Assuntos
Adaptação Biológica/genética , Tecido Adiposo/metabolismo , Rena/genética , Transcriptoma , Animais , Regiões Árticas , Finlândia , Rena/metabolismo , Estações do Ano , Sibéria
3.
Front Genet ; 9: 728, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687392

RESUMO

Northern Fennoscandia and the Sakha Republic in the Russian Federation represent the northernmost regions on Earth where cattle farming has been traditionally practiced. In this study, we performed whole-genome sequencing to genetically characterize three rare native breeds Eastern Finncattle, Western Finncattle and Yakutian cattle adapted to these northern Eurasian regions. We examined the demographic history, genetic diversity and unfolded loci under natural or artificial selection. On average, we achieved 13.01-fold genome coverage after mapping the sequencing reads on the bovine reference genome (UMD 3.1) and detected a total of 17.45 million single nucleotide polymorphisms (SNPs) and 1.95 million insertions-deletions (indels). We observed that the ancestral species (Bos primigenius) of Eurasian taurine cattle experienced two notable prehistorical declines in effective population size associated with dramatic climate changes. The modern Yakutian cattle exhibited a higher level of within-population variation in terms of number of SNPs and nucleotide diversity than the contemporary European taurine breeds. This result is in contrast to the results of marker-based cattle breed diversity studies, indicating assortment bias in previous analyses. Our results suggest that the effective population size of the ancestral Asiatic taurine cattle may have been higher than that of the European cattle. Alternatively, our findings could indicate the hybrid origins of the Yakutian cattle ancestries and possibly the lack of intensive artificial selection. We identified a number of genomic regions under selection that may have contributed to the adaptation to the northern and subarctic environments, including genes involved in disease resistance, sensory perception, cold adaptation and growth. By characterizing the native breeds, we were able to obtain new information on cattle genomes and on the value of the adapted breeds for the conservation of cattle genetic resources.

4.
Genet Sel Evol ; 38(2): 201-20, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16492375

RESUMO

Extinction of breeds threatens genetic diversity of livestock species. The need to conserve genetic diversity is widely accepted but involves in general two questions: (i) is the expected loss of diversity in a set of breeds within a defined future time horizon large enough to establish a conservation plan, and if so (ii) which breeds should be prioritised for such a conservation plan? The present study uses a marker assisted methodology to address these questions. The methodology combines core set diversity measures with a stochastic method for the estimation of expected future diversity and breed marginal diversities. The latter is defined as the change in the total diversity of all breeds caused by a one unit decrease in extinction probability of a particular breed. The stochastic method was validated by means of simulations. A large field data set consisting of 44 North Eurasian cattle breeds was analysed using simplified determined extinction probabilities. The results show that the expected loss of diversity in this set within the next 20 to 50 years is between 1 and 3% of the actual diversity, provided that the extinction probabilities which were used are approximately valid. If this loss is to be reduced, it is sufficient to include those three to five breeds with the highest marginal diversity in a conservation scheme.


Assuntos
Bovinos/genética , Variação Genética , Modelos Genéticos , Animais , Ásia , Cruzamento/métodos , Análise por Conglomerados , Europa (Continente) , Frequência do Gene , Repetições de Microssatélites/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA