Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(7): 104582, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789860

RESUMO

Abnormal mitochondrial fragmentation by dynamin-related protein1 (Drp1) is associated with the progression of aging-associated heart diseases, including heart failure and myocardial infarction (MI). Here, we report a protective role of outer mitochondrial membrane (OMM)-localized E3 ubiquitin ligase MITOL/MARCH5 against cardiac senescence and MI, partly through Drp1 clearance by OMM-associated degradation (OMMAD). Persistent Drp1 accumulation in cardiomyocyte-specific MITOL conditional-knockout mice induced mitochondrial fragmentation and dysfunction, including reduced ATP production and increased ROS generation, ultimately leading to myocardial senescence and chronic heart failure. Furthermore, ischemic stress-induced acute downregulation of MITOL, which permitted mitochondrial accumulation of Drp1, resulted in mitochondrial fragmentation. Adeno-associated virus-mediated delivery of the MITOL gene to cardiomyocytes ameliorated cardiac dysfunction induced by MI. Our findings suggest that OMMAD activation by MITOL can be a therapeutic target for aging-associated heart diseases, including heart failure and MI.

2.
Hum Mol Genet ; 30(6): 443-453, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33631794

RESUMO

Inactivation of constitutive autophagy results in the formation of cytoplasmic inclusions in neurones, but the relationship between impaired autophagy and Lewy bodies (LBs) remains unknown. α-Synuclein and p62, components of LBs, are the defining characteristic of Parkinson's disease (PD). Until now, we have analyzed mice models and demonstrated p62 aggregates derived from an autophagic defect might serve as 'seeds' and can potentially be a cause of LB formation. P62 may be the key molecule for aggregate formation. To understand the mechanisms of LBs, we analyzed p62 homeostasis and inclusion formation using PD model mice. In PARK22-linked PD, intrinsically disordered mutant CHCHD2 initiates Lewy pathology. To determine the function of CHCHD2 for inclusions formation, we generated Chchd2-knockout (KO) mice and characterized the age-related pathological and motor phenotypes. Chchd2 KO mice exhibited p62 inclusion formation and dopaminergic neuronal loss in an age-dependent manner. These changes were associated with a reduction in mitochondria complex activity and abrogation of inner mitochondria structure. In particular, the OPA1 proteins, which regulate fusion of mitochondrial inner membranes, were immature in the mitochondria of CHCHD2-deficient mice. CHCHD2 regulates mitochondrial morphology and p62 homeostasis by controlling the level of OPA1. Our findings highlight the unexpected role of the homeostatic level of p62, which is regulated by a non-autophagic system, in controlling intracellular inclusion body formation, and indicate that the pathologic processes associated with the mitochondrial proteolytic system are crucial for loss of DA neurones.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Homeostase , Corpos de Inclusão/patologia , Corpos de Lewy/patologia , Mitocôndrias/patologia , Doença de Parkinson/patologia , Proteína Sequestossoma-1/metabolismo , Fatores de Transcrição/fisiologia , Animais , Autofagia , Modelos Animais de Doenças , Corpos de Inclusão/metabolismo , Corpos de Lewy/genética , Corpos de Lewy/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteína Sequestossoma-1/genética
3.
Amino Acids ; 53(3): 381-393, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33598768

RESUMO

While it has been hypothesized that brown adipocytes responsible for mammalian thermogenesis are absent in birds, the existence of beige fat has yet to be studied directly. The present study tests the hypothesis that beige fat emerges in birds as a mechanism of physiological adaptation to cold environments. Subcutaneous neck adipose tissue from cold-acclimated or triiodothyronine (T3)-treated chickens exhibited increases in the expression of avian uncoupling protein (avUCP, an ortholog of mammalian UCP2 and UCP3) gene and some known mammalian beige adipocyte-specific markers. Morphological characteristics of white adipose tissues of treated chickens showed increased numbers of both small and larger clusters of multilocular fat cells within the tissues. Increases in protein levels of avUCP and mitochondrial marker protein, voltage-dependent anion channel, and immunohistochemical analysis for subcutaneous neck fat revealed the presence of potentially thermogenic mitochondria-rich cells. This is the first evidence that the capacity for thermogenesis may be acquired by differentiating adipose tissue into beige-like fat for maintaining temperature homeostasis in the subcutaneous fat 'neck warmer' in chickens exposed to a cold environment.


Assuntos
Aclimatação/fisiologia , Galinhas/fisiologia , Gordura Subcutânea/metabolismo , Gordura Abdominal/citologia , Gordura Abdominal/metabolismo , Adipócitos Bege/metabolismo , Tecido Adiposo/metabolismo , Animais , Peso Corporal , Temperatura Baixa , Ingestão de Alimentos , Mitocôndrias/metabolismo , Pescoço/fisiologia , Gordura Subcutânea/citologia , Gordura Subcutânea/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
4.
Data Brief ; 34: 106707, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33457479

RESUMO

1-Methyl-4-phenylpyridinium (MPP+)-treated human neuroblastoma SH-SY5Y cells have been generally accepted as a cellular model for Parkinson's disease. This article contains metabolic analysis data of not only cell lysate but also culture supernatants to understand comprehensive metabolic disturbances in this model. Metabolic analysis employed by capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Data obtained by CE-TOFMS were processed to extract peak information including m/z, peak area, and migration time. The data provided in this manuscript have been analyzed and discussed in the research article entitled "Metabolomic analysis revealed mitochondrial dysfunction and aberrant choline metabolism in MPP+-exposed SH-SY5Y cells" [1].

5.
Biopolymers ; 111(6): e23352, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32203628

RESUMO

The effect of adding ethylammonium nitrate (EAN), which is an ionic liquid (IL), on the aggregate formation of α-synuclein (α-Syn) in aqueous solution has been investigated. FTIR and Raman spectroscopy were used to investigate changes in the secondary structure of α-Syn and in the states of water molecules and EAN. The results presented here show that the addition of EAN to α-Syn causes the formation of an intermolecular ß-sheet structure in the following manner: native disordered state → polyproline II (PPII)-helix → intermolecular ß-sheet (α-Syn amyloid-like aggregates: α-SynA). Although cations and anions of EAN play roles in masking the charged side chains and PPII-helix-forming ability involved in the formation of α-SynA, water molecules are not directly related to its formation. We conclude that EAN-induced α-Syn amyloid-like aggregates form at hydrophobic associations in the middle of the molecules after masking the charged side chains at the N- and C-terminals of α-Syn.


Assuntos
Agregados Proteicos , Compostos de Amônio Quaternário/química , alfa-Sinucleína/química , Amiloide/síntese química , Amiloide/química , Precipitação Química/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Agregados Proteicos/efeitos dos fármacos , Conformação Proteica em Folha beta/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Compostos de Amônio Quaternário/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Água/química
6.
Biochem Biophys Res Commun ; 519(3): 540-546, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31537380

RESUMO

1-Methyl-4-phenylpyridinium (MPP+)-treated human neuroblastoma SH-SY5Y cells have been generally accepted as a cellular model for Parkinson's disease. To understand comprehensive metabolic disturbances in this model, both cell lysates and culture supernatants were subjected to metabolomic analysis. As expected from the fact that MPP+ inhibits mitochondrial complex I, a metabolic shift from mitochondrial oxidative phosphorylation to glycolysis was indicated by an increase in extracellular lactic acid and a parallel depletion of pyruvic acid. In cell lysates, the metabolic shift was supported by consistent decreases in TCA cycle intermediates. Metabolomic analysis also revealed aberrant choline metabolism. Choline in the culture supernatant was elevated 8.5- and 17-fold by 30 and 300 µM MPP+ exposure, respectively; therefore, extracellular choline might be a metabolic biomarker for Parkinson's disease.


Assuntos
1-Metil-4-fenilpiridínio/farmacologia , Colina/antagonistas & inibidores , Metabolômica , Mitocôndrias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Mol Cell Biol ; 39(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31061094

RESUMO

Iron is an essential nutrient for mitochondrial metabolic processes, including mitochondrial respiration. Ferritin complexes store excess iron and protect cells from iron toxicity. Therefore, iron stored in the ferritin complex might be utilized under iron-depleted conditions. In this study, we show that the inhibition of lysosome-dependent protein degradation by bafilomycin A1 and the knockdown of NCOA4, an autophagic receptor for ferritin, reduced mitochondrial respiration, respiratory chain complex assembly, and membrane potential under iron-sufficient conditions. However, autophagy did not contribute to degradation of the ferritin complex under iron-sufficient conditions. Knockout of the ferritin light chain, a subunit of the ferritin complex, inhibited ferritin degradation by decreasing interactions with NCOA4. However, ferritin light chain knockout did not affect mitochondrial functions under iron-sufficient conditions, and ferritin light chain knockout cells showed a rapid reduction of mitochondrial functions compared with wild-type cells under iron-depleted conditions. These results indicate that the constitutive degradation of the ferritin complex contributes to the maintenance of mitochondrial functions.


Assuntos
Ferritinas/química , Ferro/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Autofagia , Respiração Celular/efeitos dos fármacos , Ferritinas/genética , Ferritinas/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Macrolídeos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Coativadores de Receptor Nuclear/genética , Proteólise/efeitos dos fármacos
8.
J Poult Sci ; 55(3): 210-216, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32055177

RESUMO

Mitochondrial content is regarded a useful feature to distinguish muscle-fiber types in terms of energy metabolism in skeletal muscles. Increasing evidence suggests that specific mitochondrial bioenergetic phenotypes exist in metabolically different muscle fibers. A few studies have examined the energetic properties of skeletal muscle in domestic fowls; however, no information on muscle bioenergetics in broiler chickens selectively bred for faster growth is available. In this study, we aimed to characterize the mitochondrial contents and functions of chicken skeletal muscle consisting entirely of type I (oxidative) (M. pubo-ischio-femoralis pars medialis), type IIA (glycolytic/oxidative) (M. pubo-ischio-femoralis pars lateralis), and type IIB (glycolytic) (M. pectoralis) muscle fibers. Citrate synthase (CS) activity was the highest in type IIA muscle tissues and isolated mitochondria, among the muscle tissues tested. Although no difference was registered in mitochondrial CS activity between type IIB and type I muscles, tissue CS activity was significantly higher in the latter. Histochemical staining for NADH tetrazolium reductase and the ratio of muscle-tissue to mitochondrial CS activity indicated that type I, type IIA, and type IIB muscle-fiber types showed decreasing mitochondrial content. Mitochondria from type I muscle exhibited a higher coupled respiration rate induced by pyruvate/malate, palmitoyl-CoA/malate, and palmitoyl-carnitine, as respiratory substrates, than type IIB-muscle mitochondria, while the response of mitochondria from type IIA muscle to those substrates was comparable to that of mitochondria from type I muscle. Type IIA-muscle mitochondria exhibited the highest carnitine palmitoyltransferase-2 level among all tissues tested, which may contribute to the higher fatty acid oxidation in these mitochondria. The results suggest that mitochondrial abundance is one of the features differentiating metabolic characteristics of different chicken skeletal muscle types. Moreover, the study demonstrated that type IIA-muscle mitochondria may have distinct metabolic capacities.

9.
Sci Rep ; 7(1): 7328, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28779141

RESUMO

Increasing evidence shows that metabolic abnormalities in body fluids are distinguishing features of the pathophysiology of Parkinson's disease. However, a non-invasive approach has not been established in the earliest or pre-symptomatic phases. Here, we report comprehensive double-cohort analyses of the metabolome using capillary electrophoresis/liquid chromatography mass-spectrometry. The plasma analyses identified 18 Parkinson's disease-specific metabolites and revealed decreased levels of seven long-chain acylcarnitines in two Parkinson's disease cohorts (n = 109, 145) compared with controls (n = 32, 45), respectively. Furthermore, statistically significant decreases in five long-chain acylcarnitines were detected in Hoehn and Yahr stage I. Likewise, decreased levels of acylcarnitine(16:0), a decreased ratio of acylcarnitine(16:0) to fatty acid(16:0), and an increased index of carnitine palmitoyltransferase 1 were identified in Hoehn and Yahr stage I of both cohorts, suggesting of initial ß-oxidation suppression. Receiver operating characteristic curves produced using 12-14 long-chain acylcarnitines provided a large area of under the curve, high specificity and moderate sensitivity for diagnosing Parkinson's disease. Our data demonstrate that a primary decrement of mitochondrial ß-oxidation and that 12-14 long-chain acylcarnitines decreases would be promising diagnostic biomarkers for Parkinson's disease.


Assuntos
Carnitina/análogos & derivados , Oxirredução , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Idoso , Biomarcadores , Carnitina/metabolismo , Estudos de Coortes , Ácidos Graxos/metabolismo , Feminino , Humanos , Masculino , Metaboloma , Metabolômica/métodos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Modelos Biológicos , Músculo Esquelético/metabolismo , Curva ROC , Índice de Gravidade de Doença
10.
Sci Rep ; 7: 46240, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393913

RESUMO

A number of alternations in mitochondrial DNA (mtDNA) have been reported in different types of cancers, and the role of mtDNA in cancer has been attracting increasing interest. In order to investigate the relationship between mtDNA alternations and chemosensitivity, we constructed cybrid (trans-mitochondrial hybrid) cell lines carrying a HeLa nucleus and the mtDNA of healthy individuals because of the presence of somatic alternations in the mtDNA of many cancer cells. After a treatment with 1.0 µg/mL cisplatin for 10 days, we isolated 100 cisplatin-resistant clones, 70 of which carried the shorter mtDNA OriB variant (16184-16193 poly-cytosine tract), which was located in the control region of mtDNA. Whole mtDNA sequencing of 10 clones revealed no additional alternations. Re-construction of the HeLa nucleus and mtDNA from cisplatin-resistant cells showed that cisplatin resistance was only acquired by mtDNA alternations in the control region, and not by possible alternation(s) in the nuclear genome.


Assuntos
Cisplatino/farmacologia , DNA Mitocondrial/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Variação Genética , Antineoplásicos/farmacologia , Sequência de Bases , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Citosina/metabolismo , Fluoruracila/farmacologia , Células HeLa , Humanos , Células Híbridas/efeitos dos fármacos , Células Híbridas/metabolismo , Oxirredutases/metabolismo , Análise de Sequência de DNA
11.
Lancet Neurol ; 14(3): 274-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25662902

RESUMO

BACKGROUND: Identification of causative genes in mendelian forms of Parkinson's disease is valuable for understanding the cause of the disease. We did genetic studies in a Japanese family with autosomal dominant Parkinson's disease to identify novel causative genes. METHODS: We did a genome-wide linkage analysis on eight affected and five unaffected individuals from a family with autosomal dominant Parkinson's disease (family A). Subsequently, we did exome sequencing on three patients and whole-genome sequencing on one patient in family A. Variants were validated by Sanger sequencing in samples from patients with autosomal dominant Parkinson's disease, patients with sporadic Parkinson's disease, and controls. Participants were identified from the DNA bank of the Comprehensive Genetic Study on Parkinson's Disease and Related Disorders (Juntendo University School of Medicine, Tokyo, Japan) and were classified according to clinical information obtained by neurologists. Splicing abnormalities of CHCHD2 mutants were analysed in SH-SY5Y cells. We used the Fisher's exact test to calculate the significance of allele frequencies between patients with sporadic Parkinson's disease and unaffected controls, and we calculated odds ratios and 95% CIs of minor alleles. FINDINGS: We identified a missense mutation (CHCHD2, 182C>T, Thr61Ile) in family A by next-generation sequencing. We obtained samples from a further 340 index patients with autosomal dominant Parkinson's disease, 517 patients with sporadic Parkinson's disease, and 559 controls. Three CHCHD2 mutations in four of 341 index cases from independent families with autosomal dominant Parkinson's disease were detected by CHCHD2 mutation screening: 182C>T (Thr61Ile), 434G>A (Arg145Gln), and 300+5G>A. Two single nucleotide variants (-9T>G and 5C>T) in CHCHD2 were confirmed to have different frequencies between sporadic Parkinson's disease and controls, with odds ratios of 2·51 (95% CI 1·48-4·24; p=0·0004) and 4·69 (1·59-13·83, p=0·0025), respectively. One single nucleotide polymorphism (rs816411) was found in CHCHD2 from a previously reported genome-wide association study; however, there was no significant difference in its frequency between patients with Parkinson's disease and controls in a previously reported genome-wide association study (odds ratio 1·17, 95% CI 0·96-1·19; p=0·22). In SH-SY5Y cells, the 300+5G>A mutation but not the other two mutations caused exon 2 skipping. INTERPRETATION: CHCHD2 mutations are associated with, and might be a cause of, autosomal dominant Parkinson's disease. Further genetic studies in other populations are needed to confirm the pathogenicity of CHCHD2 mutations in autosomal dominant Parkinson's disease and susceptibility for sporadic Parkinson's disease, and further functional studies are needed to understand how mutant CHCHD2 might play a part in the pathophysiology of Parkinson's disease. FUNDING: Japan Society for the Promotion of Science; Japanese Ministry of Education, Culture, Sports, Science and Technology; Japanese Ministry of Health, Labour and Welfare; Takeda Scientific Foundation; Cell Science Research Foundation; and Nakajima Foundation.


Assuntos
Ligação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto/genética , Transtornos Parkinsonianos/genética , Análise de Sequência de DNA/métodos , Fatores de Transcrição/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Parkinsonianos/diagnóstico , Linhagem
12.
Neurosci Lett ; 580: 37-40, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25092611

RESUMO

Mutations in PTEN-induced putative kinase 1 (PINK1) cause recessive forms of Parkinson's disease (PD). PINK1 acts upstream of parkin, regulating mitochondrial elimination (mitophagy) in cultured cells treated with mitochondrial uncouplers that cause mitochondrial depolarization. PINK1 loss-of-function decreases mitochondrial membrane potential, resulting in mitochondrial dysfunction, although the exact function of PINK1 in mitochondria has not been fully elucidated. We have previously found that PINK1 deficiency causes a decrease in mitochondrial membrane potential, which is not due to a proton leak, but to respiratory chain defects. Here, we examine mitochondrial respiratory chain defects in PINK1-deficient cells, and find both complex I and complex III are defective. These results suggest that mitochondrial respiratory chain defects may be associated with PD pathogenesis caused by mutations in the PINK1 gene.


Assuntos
Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Animais , Células Cultivadas , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Camundongos Knockout , Canais de Ânion Dependentes de Voltagem/metabolismo
13.
Mol Cell ; 51(1): 20-34, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23727017

RESUMO

The mitochondrial ubiquitin ligase MITOL regulates mitochondrial dynamics. We report here that MITOL regulates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) domain formation through mitofusin2 (Mfn2). MITOL interacts with and ubiquitinates mitochondrial Mfn2, but not ER-associated Mfn2. Mutation analysis identified a specific interaction between MITOL C-terminal domain and Mfn2 HR1 domain. MITOL mediated lysine-63-linked polyubiquitin chain addition to Mfn2, but not its proteasomal degradation. MITOL knockdown inhibited Mfn2 complex formation and caused Mfn2 mislocalization and MAM dysfunction. Sucrose-density gradient centrifugation and blue native PAGE retardation assay demonstrated that MITOL is required for GTP-dependent Mfn2 oligomerization. MITOL knockdown reduced Mfn2 GTP binding, resulting in reduced GTP hydrolysis. We identified K192 in the GTPase domain of Mfn2 as a major ubiquitination site for MITOL. A K192R mutation blocked oligomerization even in the presence of GTP. Taken together, these results suggested that MITOL regulates ER tethering to mitochondria by activating Mfn2 via K192 ubiquitination.


Assuntos
Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , GTP Fosfo-Hidrolases/análise , Células HeLa , Humanos , Proteínas de Membrana , Camundongos , Proteínas Mitocondriais/análise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
14.
Circ Res ; 109(4): 396-406, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21700931

RESUMO

RATIONALE: Caloric restriction (CR) confers cardioprotection against ischemia/reperfusion injury. However, the exact mechanism(s) underlying CR-induced cardioprotection remain(s) unknown. Recent evidence indicates that Sirtuins, NAD(+)-dependent deacetylases, regulate various favorable aspects of the CR response. Thus, we hypothesized that deacetylation of specific mitochondrial proteins during CR preserves mitochondrial function and attenuates production of reactive oxygen species during ischemia/reperfusion. OBJECTIVE: The objectives of the present study were (1) to investigate the effect of CR on mitochondrial function and mitochondrial proteome and (2) to investigate what molecular mechanisms mediate CR-induced cardioprotection. METHODS AND RESULTS: Male 26-week-old Fischer344 rats were randomly divided into ad libitum-fed and CR (40% reduction) groups for 6 months. No change was observed in basal mitochondrial function, but CR preserved postischemic mitochondrial respiration and attenuated postischemic mitochondrial H(2)O(2) production. CR decreased the level of acetylated mitochondrial proteins that were associated with enhanced Sirtuin activity in the mitochondrial fraction. We confirmed a significant decrease in the acetylated forms of NDUFS1 and cytochrome bc1 complex Rieske subunit in the CR heart. Low-dose resveratrol treatment mimicked the effect of CR on deacetylating them and attenuated reactive oxygen species production during anoxia/reoxygenation in cultured cardiomyocytes without changing the expression levels of manganese superoxide dismutase. Treatment with nicotinamide completely abrogated the effect of low-dose resveratrol. CONCLUSIONS: These results strongly suggest that CR primes mitochondria for stress resistance by deacetylating specific mitochondrial proteins of the electron transport chain. Targeted deacetylation of NDUFS1 and/or Rieske subunit might have potential as a novel therapeutic approach for cardioprotection against ischemia/reperfusion.


Assuntos
Restrição Calórica , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Sirtuínas/metabolismo , Acetilação , Animais , Antioxidantes/farmacologia , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , NAD/metabolismo , NADH Desidrogenase/metabolismo , Niacinamida/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteômica , Ratos , Ratos Endogâmicos F344 , Resveratrol , Estilbenos/farmacologia
15.
J Nippon Med Sch ; 78(1): 13-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21389643

RESUMO

Somatic mutations of mitochondrial DNA (mtDNA) have been reported in different types of cancers and are suggested to play roles in metastasis, cancer development and response to anticancer agents. To predict potential roles of mtDNA alterations in colorectal cancer, we determined the entire mtDNA sequence of eleven human-derived colorectal cancer cell lines and compared with the revised Cambridge Reference Sequence to identify nucleotide alterations. Four homoplasmic and six heteroplasmic alterations were found to be novel. Among them, homoplasmic G6709A (MT-CO1) and G14804A (MT-CYB) alterations cause amino acid changes in the highly conserved residues. Heteroplasmic G1576A (MT-RNR1) and G2975A (MT-RNR2) alterations are expected to make the stem structure of mitochondrial ribosomal RNAs unstable. These nucleotide alterations are candidates that could play important roles in cancer.


Assuntos
DNA Mitocondrial/genética , Proteínas Mitocondriais/genética , Mutação , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Citocromos b/genética , DNA Mitocondrial/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Dados de Sequência Molecular , Mutação Puntual , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
16.
Artigo em Inglês | MEDLINE | ID: mdl-21300168

RESUMO

Meat-type chickens show high feed efficiency and have a very rapid growth rate compared with laying-type chickens. To clarify whether the type-specific difference in feed conversion efficiency is involved in mitochondrial bioenergetics, modular kinetic analysis was applied to oxidative phosphorylation in skeletal muscle mitochondria of both type chickens. Mitochondria from skeletal muscle of meat-type chickens showed greater substrate oxidation and phosphorylating activities, and less proton leak than those of the laying-type, resulting in a higher efficiency of oxidative phosphorylation. Gene expression and protein content of uncoupling protein (avUCP) but not adenine nucleotide translocase (avANT) gene expression were lower in skeletal muscle mitochondria of meat-type chickens than the laying-type. The current results regarding a higher efficiency of oxidative phosphorylation and UCP content may partially support the high feed efficiency of meat-type chickens.


Assuntos
Galinhas/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Peso Corporal , Galinhas/classificação , Galinhas/genética , Comportamento Alimentar , Expressão Gênica , Immunoblotting , Cinética , Masculino , Carne , Potencial da Membrana Mitocondrial , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Desacoplamento Mitocondrial , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Neurobiol Dis ; 41(1): 111-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20817094

RESUMO

Mutations in PTEN-induced putative kinase 1 (PINK1) cause a recessive form of Parkinson's disease (PD). PINK1 is associated with mitochondrial quality control and its partial knock-down induces mitochondrial dysfunction including decreased membrane potential and increased vulnerability against mitochondrial toxins, but the exact function of PINK1 in mitochondria has not been investigated using cells with null expression of PINK1. Here, we show that loss of PINK1 caused mitochondrial dysfunction. In PINK1-deficient (PINK1(-/-)) mouse embryonic fibroblasts (MEFs), mitochondrial membrane potential and cellular ATP levels were decreased compared with those in littermate wild-type MEFs. However, mitochondrial proton leak, which reduces membrane potential in the absence of ATP synthesis, was not altered by loss of PINK1. Instead, activity of the respiratory chain, which produces the membrane potential by oxidizing substrates using oxygen, declined. H(2)O(2) production rate by PINK1(-/-) mitochondria was lower than PINK1(+/+) mitochondria as a consequence of decreased oxygen consumption rate, while the proportion (H(2)O(2) production rate per oxygen consumption rate) was higher. These results suggest that mitochondrial dysfunctions in PD pathogenesis are caused not by proton leak, but by respiratory chain defects.


Assuntos
Respiração Celular , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Proteínas Quinases/deficiência , Prótons , Animais , Respiração Celular/genética , Células Cultivadas , Fibroblastos/metabolismo , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteínas Quinases/genética
18.
FEBS Lett ; 584(14): 3143-8, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20515690

RESUMO

We previously showed that heat stress stimulates reactive oxygen species (ROS) production in skeletal muscle mitochondria of birds, probably via an elevation in mitochondrial membrane potential (DeltaPsi). To clarify the mechanism underlying the elevation of DeltaPsi, modular kinetic analysis was applied to oxidative phosphorylation in skeletal muscle mitochondria of heat-stressed birds (34 degrees C for 12h). In the birds exposed to heat stress, 'substrate oxidation' (a DeltaPsi-producer) was increased compared to control (24 degrees C) birds, although there was little difference in 'proton leak' (a DeltaPsi-consumer), suggesting that an elevation in the DeltaPsi at state 4 may be due to enhanced substrate oxidation. It thus appears that enhanced substrate oxidation plays a crucial role in the overproduction of ROS for heat-stressed birds, probably via elevated DeltaPsi.


Assuntos
Transtornos de Estresse por Calor/metabolismo , Temperatura Alta , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Animais , Aves/metabolismo , Cinética , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Oxirredução , Prótons , Espécies Reativas de Oxigênio/metabolismo
19.
J Clin Invest ; 118(8): 2808-21, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18654663

RESUMO

White adipocytes are unique in that they contain large unilocular lipid droplets that occupy most of the cytoplasm. To identify genes involved in the maintenance of mature adipocytes, we expressed dominant-negative PPARgamma in 3T3-L1 cells and performed a microarray screen. The fat-specific protein of 27 kDa (FSP27) was strongly downregulated in this context. FSP27 expression correlated with induction of differentiation in cultured preadipocytes, and the protein localized to lipid droplets in murine white adipocytes in vivo. Ablation of FSP27 in mice resulted in the formation of multilocular lipid droplets in these cells. Furthermore, FSP27-deficient mice were protected from diet-induced obesity and insulin resistance and displayed an increased metabolic rate due to increased mitochondrial biogenesis in white adipose tissue (WAT). Depletion of FSP27 by siRNA in murine cultured white adipocytes resulted in the formation of numerous small lipid droplets, increased lipolysis, and decreased triacylglycerol storage, while expression of FSP27 in COS cells promoted the formation of large lipid droplets. Our results suggest that FSP27 contributes to efficient energy storage in WAT by promoting the formation of unilocular lipid droplets, thereby restricting lipolysis. In addition, we found that the nature of lipid accumulation in WAT appears to be associated with maintenance of energy balance and insulin sensitivity.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético/fisiologia , Lipólise/fisiologia , Proteínas/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/ultraestrutura , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/ultraestrutura , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Cruzamentos Genéticos , Regulação da Expressão Gênica , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Peso Molecular , Proteínas/química , Proteínas/genética , RNA Interferente Pequeno/metabolismo
20.
Gene ; 411(1-2): 69-76, 2008 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-18280061

RESUMO

Studies of both survival after sepsis and sperm motility in human populations have shown significant associations with common European mitochondrial DNA haplogroups, and have led to proposals that mitochondria bearing haplogroup H have different bioenergetic capacities than those bearing haplogroup T. However, the validity of such associations assumes that there are no non-random influences of nuclear genes or other factors. Here, we removed the effect of any differences in nuclear genes by constructing transmitochondrial cybrids harbouring mitochondria with either haplogroup H or haplogroup T in cultured A549 human lung carcinoma cells with identical nuclear backgrounds. We compared the bioenergetic capacities and coupling efficiencies of mitochondria isolated from these cells, and of mitochondria retained within the cells, as a critical experimental test of the hypothesis that these haplogroups affect mitochondrial bioenergetics. We found that there were no functionally-important bioenergetic differences between mitochondria bearing these haplogroups, using either isolated mitochondria or mitochondria within cells.


Assuntos
DNA Mitocondrial/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , População Branca/genética , Linhagem Celular Tumoral , Variação Genética , Haplótipos , Humanos , Células Híbridas , Potencial da Membrana Mitocondrial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA