Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(7)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39158045

RESUMO

For both dielectric spectroscopy and light scattering spectra, the relaxation modes in the microwave region have been characterized by the Debye relaxation model, which is determined by the peak frequency, or by an empirically extended model (e.g., Cole-Davidson and Kohlrausch-Williams-Watts), which has the appropriate line shape. For light scattering from glass-forming liquids, the general line shape is a broader high frequency side in comparison with Debye relaxation. However, for triethylene glycol (TEG) in liquid form at room temperature, the lowest frequency Raman scattering (LFR) mode shows a peak at about 3.0 GHz, which is narrower than that expected for the Debye relaxation. With increasing temperature, this peak exhibits a significant blueshift and begins to resemble the Debye relaxation shape, indicating that the LFR mode of TEG is also a relaxation mode. The narrowing of the LFR mode of TEG is suggested to be caused from the increased non-whiteness of the fluctuation correlations due to increased hydrogen bonding. This is a consequence of breaking the Debye relaxation model's approximation of the overdamping and narrowing limits in the GHz region, which was found in this study by analyzing the relaxation modes of Raman scattering using the multiple random telegraph model for evaluating thermal bath correlation. The analysis results show that the LFR relaxation times of TEG and the main dielectric relaxation overlap only by 333 K. However, the second LFR mode and ß-relaxation at higher frequencies coincide over a wide temperature range, suggesting that they are corresponding modes.

2.
J Phys Chem B ; 127(36): 7758-7763, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37671846

RESUMO

Time-of-flight (TOF) neutron diffraction measurements on pure liquid deuterated methanol and concentrated methanolic LiClO4 and LiTFSA solutions have been carried out to investigate the effect of intermolecular hydrogen bonds on the intramolecular O-D distance (rOD) of the methanol molecule in the liquid state. Intramolecular parameters for the methanol molecule are determined by the least-squares fitting analysis of the neutron total interference term observed in the high-Q region. Attenuated total reflection (ATR) IR spectra have been measured for methanolic solutions of natural abundance to determine the gravitational center frequency (νOH) of the stretching vibrational band of the methanol molecule. The relationship between rOD and νOH is approximated well by a linear function. The value dνOH/drOD = -17000 ± 3000 cm-1 Å-1 has been derived from the slope of the fitted function. It has been revealed that the O-D bond length of the methanol molecule is sensitively affected by the intermolecular hydrogen bonding interaction.

3.
J Phys Chem B ; 125(40): 11285-11291, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34605237

RESUMO

Experimental evidence has been obtained for the structure-spectra relationship of hydrogen bonds in aqueous solutions. Intramolecular O-D distance, rOD, has been determined by the least-squares fitting analysis of the neutron interference term in the high-Q region observed for pure D2O and concentrated aqueous solutions. The average O-D stretching frequency, νOD, has been obtained from the position of the center of gravity of the observed ATR-IR O-D stretching band. The linear relationship between rOD and νOD has been confirmed in the liquid state. The slope of dνOD/drOD is evaluated to be -21 000 ± 1000 cm-1 Å-1.


Assuntos
Vibração , Água , Ligação de Hidrogênio
4.
J Phys Chem B ; 124(46): 10456-10464, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33161707

RESUMO

Neutron diffraction measurements on 6Li/7Li isotopically substituted 10 and 33 mol % *LiTFSA (lithium bis(trifluoromethylsulfonyl)amide)-AN-d3 (acetonitrile-d3) and 10 and 33 mol % *LiTFSA-DMF-d7(N,N-dimethylformamide-d7) solutions have been carried out in order to obtain structural insights on the first solvation shell of Li+ in highly concentrated organic solutions. Structural parameters concerning the local structure around Li+ have been determined from the least squares fitting analysis of the first-order difference function derived from the difference between carefully normalized scattering cross sections observed for 6Li-enriched and natural abundance solutions. In 10 mol % LiTFSA-AN-d3 solution, 3.25 ± 0.04 AN molecules are coordinated to Li+ with a intermolecular Li+···N(AN) distance of 2.051 ± 0.007 Å. It has been revealed that 1.67 ± 0.07 AN molecules and 2.00 ± 0.01 TFSA- are involved in the first solvation shell of Li+ in the 33 mol % LiTFSA-AN solution. The nearest neighbor Li+···NAN and Li+···OTFSA- distances are obtained to be r(Li+···N) = 2.09 ± 0.01 Å and r(Li+···O) = 1.88 ± 0.01 Å, respectively. The first solvation shell of Li+ in the 10 mol % LiTFSA-DMF-d7 solutions contains 3.4 ± 0.1 DMF molecules with an intermolecular Li+···ODMF distance of 1.95 ± 0.02 Å. In highly concentrated 33 mol % LiTFSA-DMF-d7 solutions, there are 1.3 ± 0.2 DMF molecules and 3.2 ± 0.2 TFSA- in the first solvation shell of Li+ with intermolecular distances of r(Li+···ODMF) = 1.90 ± 0.02 Å and r(Li+···OTFSA-) = 2.01 ± 0.01 Å, respectively. The Li+···TFSA- contact ion pair stably exists in highly concentrated 33 mol % LiTFSA-AN and -DMF solutions.

5.
J Phys Chem B ; 123(23): 4967-4975, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31094512

RESUMO

Neutron diffraction measurements have been carried out on 10 mol % LiTFSA (TFSA: bis(trifluoromethylsulfonil)amide) solutions in methanol- d4 and 2-propanol- d8 to obtain information on the solvation structure of Li+. The detailed coordination structure of solvent molecules within the first solvation shell of Li+ was determined through the least-squares fitting analysis of the difference function between normalized scattering cross sections observed for 6Li/7Li isotopically substituted sample solutions. The nearest-neighbor Li+···O distance and coordination number determined for the 10 mol % LiTFSA-methanol- d4 solution are rLiO = 1.98 ± 0.02 Å and nLiO = 3.8 ± 0.6, respectively. In the 2-propanol- d8 solution, it has been revealed that 2-propanol- d8 molecules within the first solvation shell of Li+ take at least two different coordination geometries with the intermolecular nearest-neighbor Li+···O distance of rLiO = 1.93 ± 0.04 Å. The Li+···O coordination number, nLiO = 3.3 ± 0.3, is determined. Ion-pair formation in the LiTFSA-methanol and LiTFSA-2-propanol solutions has been investigated by the attenuated total reflection infrared spectroscopic method. Mole fractions of free, Li+-bound, and aggregated TFSA- are derived from the peak deconvolution analysis of vibrational bands observed for TFSA-.

6.
J Phys Chem B ; 122(5): 1695-1701, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29336562

RESUMO

Neutron diffraction measurements have been carried out for 6Li/7Li isotopically substituted aqueous 1.0 mol % (0.5 mol/kg) LiCl and 1.1 mol % (0.56 mol/kg) LiClO4 solutions in D2O to obtain structural insight concerning hydration structure of Li+ in more dilute electrolyte solutions. The first-order difference function, ΔLi(Q), was analyzed by means of the least squares fitting procedure to obtain short-range structural parameters around the Li+. It was revealed that the nearest neighbor Li+···O(D2O) distance, rLiO, and the coordination number, nLiO, for the aqueous 1.0 mol % LiCl solution are 2.01 ± 0.02 Å and 5.9 ± 0.1, respectively. The values, rLiO = 1.97 ± 0.02 Å and nLiO = 6.1 ± 0.1, are obtained for aqueous 1.1 mol % LiClO4 solution. These results indicate that the hydration number of Li+ in a dilute solution is close to 6, which is much larger than 4, which has long been believed. A possible explanation is that the hydration number of Li+ varies with the solute concentration.

7.
J Phys Chem B ; 121(48): 10979-10987, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29135254

RESUMO

Isotropic Raman scattering and time-of-flight neutron diffraction measurements were carried out for concentrated LiTFSA-EC solutions to obtain structural insight on solvated Li+ as well as the structure of contact ion pair, Li+···TFSA-, formed in highly concentrated EC solutions. Symmetrical stretching vibrational mode of solvated Li+ and solvated Li+···TFSA- ion pair were observed at ν = 168-177 and 202-224 cm-1, respectively. Detailed structural properties of solvated Li+ and Li+···TFSA- contact ion pair were derived from the least-squares fitting analysis of first-order difference function, ΔLi(Q), between neutron scattering cross sections observed for 6Li/7Li isotopically substituted 10 and 25 mol % *LiTFSA-ECd4 solutions. It has been revealed that Li+ in the 10 mol % LiTFSA solution is fully solvated by ca. 4 EC molecules. The nearest neighbor Li+···O(EC) distance and Li+···O(EC)═C(EC) bond angle are determined to be 1.90 ± 0.01 Å and 141 ± 1°, respectively. In highly concentrated 25 mol % LiTFSA-EC solution, the average solvation number of Li+ decreases to ca. 3 and ca. 1.5. TFSA- are directly contacted to Li+. These results agree well with the results of band decomposition analyses of isotropic Raman spectra for intramolecular vibrational modes of both EC and TFSA-.

8.
J Phys Chem B ; 120(20): 4668-78, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27157529

RESUMO

Low-frequency isotropic Raman scattering and time-of-flight neutron diffraction measurements were carried out for (6)Li/(7)Li and H/D isotopically substituted *LiCl- and *LiClO4-tetrahydrofuran (*THF) solutions in order to obtain microscopic insight into solvated Li(+), Li(+)···Cl(-) and Li(+)···ClO4(-) contact ion pairs formed in concentrated THF solutions. Symmetrical stretching vibrational mode of solvated Li(+) in LiCl and LiClO4 solutions was observed at ν = 181-184 and 140 cm(-1), respectively. The stretching vibrational mode of Li(+)···Cl(-) and Li(+)···ClO4(-) solvated contact ion pairs formed in 4 mol % (6)LiCl-THF-h8 and (7)LiCl-THF-h8 solutions was found at ν = 469 and 435 cm(-1), respectively. Detailed structural properties of solvated Li(+) and the contact ion pairs were derived from the least-squares fitting analyses of the first-order difference function, ΔLi(Q), obtained from neutron diffraction measurements on (6)Li/(7)Li isotopically substituted THF-d8 solutions. It has been revealed that Li(+) takes 4-fold coordination in the average local structure of Li(+)X(-)(THF)3, X = Cl and ClO4. The nearest neighbor Li(+)···O(THF) distance was determined to be 2.21 ± 0.01 Å and 2.07 ± 0.01 Å for 4 mol % *LiCl- and 10 mol % *LiClO4-THF-d8 solutions, respectively. The Li(+)···anion distances for Li(+)···Cl(-) and Li(+)···O(ClO4(-)) contact ion pairs were determined to be 2.4 ± 0.1 Å and 2.19 ± 0.01 Å, respectively. The nearest neighbor Li(+)···THF interaction is significantly modified by the anion in the first solvation shell.

9.
Anal Sci ; 24(10): 1373-6, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18845904

RESUMO

The liquid structure of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM]PF(6), was investigated by neutron diffraction with H/D substitution method, where the hydrogen atoms in the imidazolium ring were partially deuterated. The local structures around the ring hydrogen atoms in liquid are very similar to those estimated from the crystal structure.

10.
J Phys Chem B ; 111(39): 11337-41, 2007 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17824691

RESUMO

Neutron diffraction measurements on 35Cl/37Cl isotopically substituted anion exchange resins were carried out in order to obtain direct information on the local structure around the chloride ion absorbed in the resin. Structural parameters concerning the first nearest-neighbor interaction of chloride ions were determined through a least-squares fitting procedure of the observed first-order difference function, DeltaCl(Q). It has been revealed that the chloride ion is neighboring an ion exchange group (-CH2(CH3)3N+) with a Cl-...N distance of 3.10(3) A, and simultaneously bonded with 2.4(1) D2O molecules with a Cl-...D distance of 2.25(2) A. The second and third nearest water molecules around Cl- have also been observed. These results indicate that the direct ionic interaction between Cl- and -CH2(CH3)3N+ drastically reduces the number of first-neighbor water molecules around Cl- but enhances the long-distance structuring of the remaining water molecules in the environment surrounded by a hydrophobic polymer matrix.

11.
J Phys Chem B ; 111(22): 6104-9, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17497919

RESUMO

Time-of-flight neutron diffraction measurements were carried out for 6Li/7Li isotopically substituted 10 mol % LiPF6-propylene carbonate-d6 (PC-d6) solutions, in order to obtain structural information on the first solvation shell of Li+. Structural parameters concerning the nearest neighbor Li+...PC and Li+...PF6- interactions were determined through least-squares fitting analysis of the observed difference function, DeltaLi(Q). It has been revealed that the first solvation shell of Li+ consists in average of 4.5(1) PC molecules with an intermolecular Li+...O(PC) distance of 2.04(1) A. The angle Li+...O=C bond angle has been determined to be 138(2) degrees.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(3 Pt 1): 031805, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11909100

RESUMO

The salt effect on the phase transition of N-isopropylacrylamide (NIPA) gel was studied for alkali-metal chlorides (NaCl, KCl, and CsCl). Low-frequency Raman scattering experiment was conducted to know the dynamic state of water molecule under the presence of salt and its correlation to macroscopic phase behavior of the gel was investigated together with the thermodynamic activities of water molecule of aqueous alkali-metal chloride solutions. The series of swelling experiment reveal that the change in the gel volume phase transition strongly depends on the salt concentration and is related to the dehydration with respect to hydrophobic hydration. From the analysis of the reduced low-frequency Raman spectra in water and aqueous alkali-metal chlorides solutions by the use of the relaxation mode that takes into account the inertia and the non-white effects, the characteristic values of aqueous salt solutions (i.e., relaxation time and modulation speed) indicate that the addition of alkali-metal chloride to gel fluid affects the disruption of water molecules in the hydration shell around the NIPA gel and the formation of the hydrogen-bonded network structure of water around themselves, as a result of which the gel collapses. The chemical potential and the dynamic nature of water molecule at the transition points are well correlated: the chemical potentials at the transition points are almost constant whereas the structure of bulk water is changed by addition of alkali-metal chlorides or change in temperature. These results strongly suggest that the swelling ratio of N-isopropylacrylamide gel is a function of hydration degree, which is regulated by the chemical potential of water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA