Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neuroimaging ; 32(4): 697-709, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35294075

RESUMO

BACKGROUND AND PURPOSE: We investigated the effects of aging, white matter hyperintensities (WMH), and cognitive impairment on brain iron levels and cerebral oxygen metabolism, known to be altered in Alzheimer's disease (AD), using quantitative susceptibility mapping and MR-based cerebral oxygen extraction fraction (OEF). METHODS: In 100 individuals over the age of 50 (68/32 cognitively impaired/intact), OEF and neural tissue susceptibility (χn ) were computed retrospectively from MRI multi-echo gradient echo data, obtained on a 3 Tesla MRI scanner. The effects of age and WMH on OEF and χn were assessed within groups, and OEF and χn were assessed between groups, using multivariate regression analyses. RESULTS: Cognitively impaired subjects were found to have 19% higher OEF and 34% higher χn than cognitively intact subjects in the cortical gray matter and several frontal, temporal, and parietal regions (p < .05). Increased WMH burden was significantly associated with decreased OEF in the cognitively impaired, but not in the cognitively intact. Older age had a stronger association with decreased OEF in the cognitively intact group. Both older age and increased WMH burden were significantly associated with increased χn in temporoparietal regions in the cognitively impaired. CONCLUSIONS: Higher brain OEF and χn in cognitively impaired older individuals may reflect altered oxygen metabolism and iron in areas with underlying AD pathology. Both age and WMH have associations with OEF and χn but are modified by the presence of cognitive impairment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Idoso , Doença de Alzheimer/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Humanos , Ferro , Imageamento por Ressonância Magnética/métodos , Oxigênio/metabolismo , Estudos Retrospectivos , Substância Branca/patologia
2.
Am J Nucl Med Mol Imaging ; 11(4): 313-326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513285

RESUMO

Distinguishing frontotemporal lobar degeneration (FTLD) and Alzheimer Disease (AD) on FDG-PET based on qualitative review alone can pose a diagnostic challenge. SPM has been shown to improve diagnostic performance in research settings, but translation to clinical practice has been lacking. Our purpose was to create a heuristic scoring method based on statistical parametric mapping z-scores. We aimed to compare the performance of the scoring method to the initial qualitative read and a machine learning (ML)-based method as benchmarks. FDG-PET/CT or PET/MRI of 65 patients with suspected dementia were processed using SPM software, yielding z-scores from either whole brain (W) or cerebellar (C) normalization relative to a healthy cohort. A non-ML, heuristic scoring system was applied using region counts below a preset z-score cutoff. W z-scores, C z-scores, or WC z-scores (z-scores from both W and C normalization) served as features to build random forest models. The neurological diagnosis was used as the gold standard. The sensitivity of the non-ML scoring system and the random forest models to detect AD was higher than the initial qualitative read of the standard FDG-PET [0.89-1.00 vs. 0.22 (95% CI, 0-0.33)]. A categorical random forest model to distinguish AD, FTLD, and normal cases had similar accuracy than the non-ML scoring model (0.63 vs. 0.61). Our non-ML-based scoring system of SPM z-scores approximated the diagnostic performance of a ML-based method and demonstrated higher sensitivity in the detection of AD compared to qualitative reads. This approach may improve the diagnostic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA