Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6662): eabq5202, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676943

RESUMO

Kupffer cells (KCs) are localized in liver sinusoids but extend pseudopods to parenchymal cells to maintain their identity and serve as the body's central bacterial filter. Liver cirrhosis drastically alters vascular architecture, but how KCs adapt is unclear. We used a mouse model of liver fibrosis and human tissue to examine immune adaptation. Fibrosis forced KCs to lose contact with parenchymal cells, down-regulating "KC identity," which rendered them incapable of clearing bacteria. Commensals stimulated the recruitment of monocytes through CD44 to a spatially distinct vascular compartment. There, recruited monocytes formed large aggregates of multinucleated cells (syncytia) that expressed phenotypical KC markers and displayed enhanced bacterial capture ability. Syncytia formed via CD36 and were observed in human cirrhosis as a possible antimicrobial defense that evolved with fibrosis.


Assuntos
Infecções Transmitidas por Sangue , Células Gigantes , Células de Kupffer , Cirrose Hepática , Animais , Humanos , Camundongos , Células Gigantes/imunologia , Células Gigantes/microbiologia , Células de Kupffer/imunologia , Células de Kupffer/microbiologia , Cirrose Hepática/imunologia , Cirrose Hepática/microbiologia , Cirrose Hepática/patologia , Infecções Transmitidas por Sangue/imunologia , Modelos Animais de Doenças
2.
Colloids Surf B Biointerfaces ; 104: 289-93, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23334183

RESUMO

Pulmonary surfactant is a complex mixture of phospholipids and proteins and forms a thin film at the lung alveolar interface separating air from liquid environment. The film reduces the work of breathing during repeatable compressions of the alveoli which form a characteristic multilayer upon compression. In this work, we investigated the structure of bovine lipid extract surfactant (BLES). We analysed the BLES films by atomic force microscopy (AFM) and spectroscopic ellipsometry (SE) in order to provide combined characterization of both morphology and thickness of surfactant films. We show how the spectroscopic ellipsometry can be used to supplement the data obtained by AFM. We demonstrate that indium tin oxide (ITO) substrate used for spectroscopic ellipsometry is preferable over glass substrate to enhance the optical contrast. An optical model was proposed to account for non-uniform film morphology. We obtained good correlations between the multilayer surface coverage, determined by both AFM and SE. SE measures the thickness of the first uniform monolayer as 2.6 nm that cannot be achieved by AFM imaging alone.


Assuntos
Lipídeos/análise , Proteínas/análise , Tensoativos/análise , Compostos de Estanho/química , Animais , Bovinos , Microscopia de Força Atômica , Análise Espectral , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA