Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 5(7): eaau4202, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31392261

RESUMO

Signaling through the receptor tyrosine kinase RET is essential during normal development. Both gain- and loss-of-function mutations are involved in a variety of diseases, yet the molecular details of receptor activation have remained elusive. We have reconstituted the complete extracellular region of the RET signaling complex together with Neurturin (NRTN) and GFRα2 and determined its structure at 5.7-Å resolution by cryo-EM. The proteins form an assembly through RET-GFRα2 and RET-NRTN interfaces. Two key interaction points required for RET extracellular domain binding were observed: (i) the calcium-binding site in RET that contacts GFRα2 domain 3 and (ii) the RET cysteine-rich domain interaction with NRTN. The structure highlights the importance of the RET cysteine-rich domain and allows proposition of a model to explain how complex formation leads to RET receptor dimerization and its activation. This provides a framework for targeting RET activity and for further exploration of mechanisms underlying neurological diseases.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Neurturina/química , Conformação Proteica , Proteínas Proto-Oncogênicas c-ret/química , Microscopia Crioeletrônica , Cisteína/química , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/ultraestrutura , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Neurturina/ultraestrutura , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas Proto-Oncogênicas c-ret/ultraestrutura , Transdução de Sinais
3.
Nat Plants ; 4(8): 615, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30038411

RESUMO

In the version of this Article originally published, the name of co-author Annemarie Perez Boerema was coded wrongly, resulting in it being incorrect when exported to citation databases. This has been corrected, though no visible changes will be apparent.

4.
Nat Plants ; 4(4): 212-217, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29610536

RESUMO

Oxygenic photosynthesis produces oxygen and builds a variety of organic compounds, changing the chemistry of the air, the sea and fuelling the food chain on our planet. The photochemical reactions underpinning this process in plants take place in the chloroplast. Chloroplasts evolved ~1.2 billion years ago from an engulfed primordial diazotrophic cyanobacterium, and chlororibosomes are responsible for synthesis of the core proteins driving photochemical reactions. Chlororibosomal activity is spatiotemporally coupled to the synthesis and incorporation of functionally essential co-factors, implying the presence of chloroplast-specific regulatory mechanisms and structural adaptation of the chlororibosome1,2. Despite recent structural information3-6, some of these aspects remained elusive. To provide new insights into the structural specialities and evolution, we report a comprehensive analysis of the 2.9-3.1 Å resolution electron cryo-microscopy structure of the spinach chlororibosome in complex with its recycling factor and hibernation-promoting factor. The model reveals a prominent channel extending from the exit tunnel to the chlororibosome exterior, structural re-arrangements that lead to increased surface area for translocon binding, and experimental evidence for parallel and convergent evolution of chloro- and mitoribosomes.


Assuntos
Cloroplastos/química , Proteínas de Plantas/química , Ribossomos/química , Spinacia oleracea/citologia , Cloroplastos/metabolismo , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Proteínas de Plantas/metabolismo , Conformação Proteica , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA