Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 20(2): 201-210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38012344

RESUMO

Bacteria can be programmed to create engineered living materials (ELMs) with self-healing and evolvable functionalities. However, further development of ELMs is greatly hampered by the lack of engineerable nonpathogenic chassis and corresponding programmable endogenous biopolymers. Here, we describe a technological workflow for facilitating ELMs design by rationally integrating bioinformatics, structural biology and synthetic biology technologies. We first develop bioinformatics software, termed Bacteria Biopolymer Sniffer (BBSniffer), that allows fast mining of biopolymers and biopolymer-producing bacteria of interest. As a proof-of-principle study, using existing pathogenic pilus as input, we identify the covalently linked pili (CLP) biosynthetic gene cluster in the industrial workhorse Corynebacterium glutamicum. Genetic manipulation and structural characterization reveal the molecular mechanism of the CLP assembly, ultimately enabling a type of programmable pili for ELM design. Finally, engineering of the CLP-enabled living materials transforms cellulosic biomass into lycopene by coupling the extracellular and intracellular bioconversion ability.


Assuntos
Bactérias , Engenharia Metabólica , Fluxo de Trabalho , Licopeno , Biopolímeros
2.
Mater Today Bio ; 18: 100515, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36582449

RESUMO

Cancer cells predominantly adapt the frequent but less efficient glycolytic process to produce ATPs rather than the highly efficient oxidative phosphorylation pathway. Such a regulated metabolic pattern in cancer cells offers promising therapeutic opportunities to kill tumors by glucose depletion or glycolysis blockade. In addition, to guarantee tumor-specific therapeutic targets, effective tumor-homing, accumulation, and retention strategies toward tumor regions should be elaborately designed. In the present work, genetically engineered tumor-targeting microbes (transgenic microorganism EcM-GDH (Escherichia coli MG1655) expressing exogenous glucose dehydrogenase (GDH) have been constructed to competitively deprive tumors of glucose nutrition for metabolic intervention and starvation therapy. Our results show that the engineered EcM-GDH can effectively deplete glucose and trigger pro-death autophagy and p53-initiated apoptosis in colorectal tumor cells/tissues both in vitro and in vivo. The present design illuminates the promising prospects for genetically engineered microbes in metabolic intervention therapeutics against malignant tumors based on catalytically nutrient deprivation, establishing an attractive probiotic therapeutic strategy with high effectiveness and biocompatibility.

3.
Chem Rev ; 123(5): 2349-2419, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36512650

RESUMO

Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.


Assuntos
Ciência dos Materiais , Biologia Sintética
4.
Sci Adv ; 8(18): eabm7665, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522739

RESUMO

There is an increasing trend of combining living cells with inorganic semiconductors to construct semi-artificial photosynthesis systems. Creating a robust and benign bio-abiotic interface is key to the success of such solar-to-chemical conversions but often faces a variety of challenges, including biocompatibility and the susceptibility of cell membrane to high-energy damage arising from direct interfacial contact. Here, we report living mineralized biofilms as an ultrastable and biocompatible bio-abiotic interface to implement single enzyme to whole-cell photocatalytic applications. These photocatalyst-mineralized biofilms exhibited efficient photoelectrical responses and were further exploited for diverse photocatalytic reaction systems including a whole-cell photocatalytic CO2 reduction system enabled by the same biofilm-producing strain. Segregated from the extracellularly mineralized semiconductors, the bacteria remained alive even after 5 cycles of photocatalytic NADH regeneration reactions, and the biofilms could be easily regenerated. Our work thus demonstrates the construction of biocompatible interfaces using biofilm matrices and establishes proof of concept for future sustainable photocatalytic applications.

5.
Adv Mater ; 34(19): e2201411, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35307880

RESUMO

The development of minimally invasive cardiac patches, either as hemostatic dressing or treating myocardial infarction, is of clinical significance but remains a major challenge. Designing such patches often requires simultaneous consideration of several material attributes, including bioabsorption, non-toxicity, matching the mechanic properties of heart tissues, and working efficiently in wet and dynamic environments. Using genetically engineered multi-domain proteins, a printed bi-layer proteinaceous hydrogel patch for heart failure treatments is reported. The intrinsic self-healing nature of hydrogel materials physically enables seamless interfacial integration of two disparate hydrogel layers and functionally endows the cardiac patches with the combinatorial advantages of each layer. Leveraging the biocompatibility, structural stability, and tunable drug release properties of the bi-layer hydrogel, promising effects of hemostasis, fibrosis reduction, and heart function recovery on mice is demonstrated with two myocardium damage models. Moreover, this proteinaceous patch is proved biodegradable in vivo without any additive inflammations. In conclusion, this work introduces a promising new type of minimally invasive patch based on genetically modified double-layer protein gel for treating heart-related injuries or diseases.


Assuntos
Hemostáticos , Infarto do Miocárdio , Animais , Bandagens , Hidrogéis/química , Camundongos , Infarto do Miocárdio/tratamento farmacológico , Miocárdio
6.
Natl Sci Rev ; 8(8): nwaa191, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34691703

RESUMO

Marine diatoms construct their hierarchically ordered, three-dimensional (3D) external structures called frustules through precise biomineralization processes. Recapitulating the remarkable architectures and functions of diatom frustules in artificial materials is a major challenge that has important technological implications for hierarchically ordered composites. Here, we report the construction of highly ordered, mineralized composites based on fabrication of complex self-supporting porous structures-made of genetically engineered amyloid fusion proteins and the natural polysaccharide chitin-and performing in situ multiscale protein-mediated mineralization with diverse inorganic materials, including SiO2, TiO2 and Ga2O3. Subsequently, using sugar cubes as templates, we demonstrate that 3D fabricated porous structures can become colonized by engineered bacteria and can be functionalized with highly photoreactive minerals, thereby enabling co-localization of the photocatalytic units with a bacteria-based hydrogenase reaction for a successful semi-solid artificial photosynthesis system for hydrogen evolution. Our study thus highlights the power of coupling genetically engineered proteins and polysaccharides with biofabrication techniques to generate hierarchically organized mineralized porous structures inspired by nature.

7.
Nat Chem Biol ; 17(3): 351-359, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33349707

RESUMO

Living organisms have evolved sophisticated cell-mediated biomineralization mechanisms to build structurally ordered, environmentally adaptive composite materials. Despite advances in biomimetic mineralization research, it remains difficult to produce mineralized composites that integrate the structural features and 'living' attributes of their natural counterparts. Here, inspired by natural graded materials, we developed living patterned and gradient composites by coupling light-inducible bacterial biofilm formation with biomimetic hydroxyapatite (HA) mineralization. We showed that both the location and the degree of mineralization could be regulated by tailoring functional biofilm growth with spatial and biomass density control. The cells in the composites remained viable and could sense and respond to environmental signals. Additionally, the composites exhibited a maximum 15-fold increase in Young's modulus after mineralization and could be applied to repair damage in a spatially controlled manner. Beyond insights into the mechanism of formation of natural graded composites, our study provides a viable means of fabricating living composites with dynamic responsiveness and environmental adaptability.


Assuntos
Adesinas Bacterianas/genética , Biofilmes/efeitos da radiação , Durapatita/química , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos da radiação , Proteínas/genética , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/efeitos da radiação , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/efeitos da radiação , Biofilmes/crescimento & desenvolvimento , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Materiais Biomiméticos/efeitos da radiação , Biomineralização/efeitos da radiação , Engenharia Celular/métodos , Relação Dose-Resposta à Radiação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/efeitos da radiação , Expressão Gênica , Luz , Mytilus , Proteínas/metabolismo , Proteínas/efeitos da radiação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/efeitos da radiação
8.
Adv Sci (Weinh) ; 7(14): 1903558, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32714744

RESUMO

Waterborne viruses frequently cause disease outbreaks and existing strategies to remove such viral pathogens often involve harsh or energy-consuming water treatment processes. Here, a simple, efficient, and environmentally friendly approach is reported to achieve highly selective disinfection of specific viruses with living engineered biofilm materials. As a proof-of-concept, Escherichia coli biofilm matrix protein CsgA was initially genetically fused with the influenza-virus-binding peptide (C5). The resultant engineered living biofilms could correspondingly capture virus particles directly from aqueous solutions, disinfecting samples to a level below the limit-of-detection for a qPCR-based detection assay. By exploiting the surface-adherence properties of biofilms, it is further shown that polypropylene filler materials colonized by the CsgA-C5 biofilms can be utilized to disinfect river water samples with influenza titers as high as 1 × 107 PFU L-1. Additionally, a suicide gene circuit is designed and applied in the engineered strain that strictly limits the growth of bacterial, therefore providing a viable route to reduce potential risks confronted with the use of genetically modified organisms. The study thus illustrates that engineered biofilms can be harvested for the disinfection of pathogens from environmental water samples in a controlled manner and highlights the unique biology-only properties of living substances for material applications.

9.
Nano Lett ; 19(12): 8399-8408, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31512886

RESUMO

The precise manipulation, localization, and assembly of biological and bioinspired molecules into organized structures have greatly promoted material science and bionanotechnology. Further technological innovation calls for new patternable soft materials with the long-sought qualities of environmental tolerance and functional flexibility. Here, we report a patterned amyloid material (PAM) platform for producing hierarchically ordered structures that integrate these material attributes. This platform, combining soft lithography with generic amyloid monomer inks (consisting of genetically engineered biofilm proteins dissolved in hexafluoroisopropanol), along with methanol-assisted curing, enables the spatially controlled deposition and in situ reassembly of amyloid monomers. The resulting patterned structures exhibit spectacular chemical and thermal stability and mechanical robustness under harsh conditions. The PAMs can be programmed for a vast array of multilevel functionalities, including anchoring nanoparticles, enabling diverse fluorescent protein arrays, and serving as self-supporting porous sheets for cellular growth. This PAM platform will not only drive innovation in biomanufacturing but also broaden the applications of patterned soft architectures in optics, electronics, biocatalysis, analytical regents, cell engineering, medicine, and other areas.


Assuntos
Amiloide/química , Nanopartículas/química
10.
Sci Adv ; 5(8): eaax3155, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31467979

RESUMO

Many biological materials form via liquid-liquid phase separation (LLPS), followed by maturation into a solid-like state. Here, using a biologically inspired assembly mechanism designed to recapitulate these sequential assemblies, we develop ultrastrong underwater adhesives made from engineered proteins containing mammalian low-complexity (LC) domains. We show that LC domain-mediated LLPS and maturation substantially promotes the wetting, adsorption, priming, and formation of dense, uniform amyloid nanofiber coatings on diverse surfaces (e.g., Teflon), and even penetrating difficult-to-access locations such as the interiors of microfluidic devices. Notably, these coatings can be deposited on substrates over a broad range of pH values (3 to 11) and salt concentrations (up to 1 M NaCl) and exhibit strong underwater adhesion performance. Beyond demonstrating the utility of mammalian LC domains for driving LLPS in soft materials applications, our study illustrates a powerful example of how combining LLPS with subsequent maturation steps can be harnessed for engineering protein-based materials.

11.
Chem Sci ; 10(14): 4004-4014, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-31015941

RESUMO

Engineering functional amyloids through a modular genetic strategy represents new opportunities for creating multifunctional molecular materials with tailored structures and performance. Despite important advances, how fusion modules affect the self-assembly and functional properties of amyloids remains elusive. Here, using Escherichia coli curli as a model system, we systematically studied the effect of flanking domains on the structures, assembly kinetics and functions of amyloids. The designed amyloids were composed of E. coli biofilm protein CsgA (as amyloidogenic cores) and one or two flanking domains, consisting of chitin-binding domains (CBDs) from Bacillus circulans chitinase, and/or mussel foot proteins (Mfps). Incorporation of fusion domains did not disrupt the typical ß-sheet structures, but indeed affected assembly rate, morphology, and stiffness of resultant fibrils. Consequently, the CsgA-fusion fibrils, particularly those containing three domains, were much shorter than the CsgA-only fibrils. Furthermore, the stiffness of the resultant fibrils was heavily affected by the structural feature of fusion domains, with ß-sheet-containing domains tending to increase the Young's modulus while random coil domains decreasing the Young's modulus. In addition, fibrils containing CBD domains showed higher chitin-binding activity compared to their CBD-free counterparts. The CBD-CsgA-Mfp3 construct exhibited significantly lower binding activity than Mfp5-CsgA-CBD due to inappropriate folding of the CBD domain in the former construct, in agreement with results based upon molecular dynamics modeling. Our study provides new insights into the assembly and functional properties of designer amyloid proteins with increasing complex domain structures and lays the foundation for the future design of functional amyloid-based structures and molecular materials.

12.
Nat Commun ; 10(1): 1395, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918257

RESUMO

The physiological or pathological formation of fibrils often relies on molecular-scale nucleators that finely control the kinetics and structural features. However, mechanistic understanding of how protein nucleators mediate fibril formation in cells remains elusive. Here, we develop a CsgB-decorated DNA origami (CB-origami) to mimic protein nucleators in Escherichia coli biofilm that direct curli polymerization. We show that CB-origami directs curli subunit CsgA monomers to form oligomers and then accelerates fibril formation by increasing the proliferation rate of primary pathways. Fibrils grow either out from (departure mode) or towards the nucleators (arrival mode), implying two distinct roles of CsgB: as nucleation sites and as trap sites to capture growing nanofibrils in vicinity. Curli polymerization follows typical stop-and-go dynamics but exhibits a higher instantaneous elongation rate compared with independent fibril growth. This origami nucleator thus provides an in vitro platform for mechanistically probing molecular nucleation and controlling directional fibril polymerization for bionanotechnology.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Polimerização , Biofilmes , DNA , Escherichia coli/genética , Cinética
13.
J Mol Biol ; 430(20): 3720-3734, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29702108

RESUMO

Many living organisms make use of diverse amyloid proteins as functional building blocks to fulfill a variety of physiological applications. This fact, along with the intrinsic self-assembly and outstanding material properties of amyloids, has prompted a significant amount of research in the synthetic design of functional amyloids to form diverse nanoarchitectures, molecular materials, and hybrid or composite materials. In particular, a new research paradigm has recently been advanced that uses synthetic biology to harness functional amyloids with cells as living materials or functional devices. Here we outline important progress in the synthetic design of functional amyloids, in the context of both non-living and living systems. We propose several important tools and underline emerging techniques and principles that might be useful in advancing the future synthetic design of functional amyloids.


Assuntos
Amiloide/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/síntese química , Animais , Humanos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Engenharia de Proteínas , Relação Estrutura-Atividade
14.
Adv Mater ; 30(16): e1705968, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29516606

RESUMO

Programming living cells to organize inorganic nano-objects (NOs) in a spatiotemporally precise fashion would advance new techniques for creating ordered ensembles of NOs and new bio-abiotic hybrid materials with emerging functionalities. Bacterial cells often grow in cellular communities called biofilms. Here, a strategy is reported for programming dynamic biofilm formation for the synchronized assembly of discrete NOs or hetero-nanostructures on diverse interfaces in a dynamic, scalable, and hierarchical fashion. By engineering Escherichia coli to sense blue light and respond by producing biofilm curli fibers, biofilm formation is spatially controlled and the patterned NOs' assembly is simultaneously achieved. Diverse and complex fluorescent quantum dot patterns with a minimum patterning resolution of 100 µm are demonstrated. By temporally controlling the sequential addition of NOs into the culture, multilayered heterostructured thin films are fabricated through autonomous layer-by-layer assembly. It is demonstrated that biologically dynamic self-assembly can be used to advance a new repertoire of nanotechnologies and materials with increasing complexity that would be otherwise challenging to produce.


Assuntos
Nanoestruturas , Biofilmes , Escherichia coli , Nanotecnologia , Pontos Quânticos
15.
ACS Nano ; 11(7): 6985-6995, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28609612

RESUMO

Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA