Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 162: 107060, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290394

RESUMO

With the COVID-19 pandemic causing challenges in hospital admissions globally, the role of home health monitoring in aiding the diagnosis of mental health disorders has become increasingly important. This paper proposes an interpretable machine learning solution to optimise initial screening for major depressive disorder (MDD) in both male and female patients. The data is from the Stanford Technical Analysis and Sleep Genome Study (STAGES). We analyzed 5-min short-term electrocardiogram (ECG) signals during nighttime sleep stages of 40 MDD patients and 40 healthy controls, with a 1:1 gender ratio. After preprocessing, we calculated the time-frequency parameters of heart rate variability (HRV) based on the ECG signals and used common machine learning algorithms for classification, along with feature importance analysis for global decision analysis. Ultimately, the Bayesian optimised extremely randomized trees classifier (BO-ERTC) showed the best performance on this dataset (accuracy 86.32%, specificity 86.49%, sensitivity 85.85%, F1-score 0.86). By using feature importance analysis on the cases confirmed by BO-ERTC, we found that gender is one of the most important factors affecting the prediction of the model, which should not be overlooked in our assisted diagnosis. This method can be embedded in portable ECG monitoring systems and is consistent with the literature results.


Assuntos
COVID-19 , Transtorno Depressivo Maior , Humanos , Frequência Cardíaca/fisiologia , Transtorno Depressivo Maior/diagnóstico , Teorema de Bayes , Depressão , Pandemias , COVID-19/diagnóstico , Polissonografia/métodos , Aprendizado de Máquina , Fases do Sono/fisiologia , Hospitais
2.
PLoS One ; 17(11): e0277090, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36327249

RESUMO

Transcutaneous auricular vagus nerve stimulation (taVNS) can improve autonomic nerve function and is currently undergoing extensive clinical research; however, its efficacy heterogeneity has caused great controversy. Heart rate variability (HRV), a biomarker reflecting autonomic function, exhibits a time-varying pattern with circadian rhythms, which may be the main reason for the inconsistent stimulation effects. To test this conjecture, we performed isochronous acute stimulation experiments at intervals of 12 h. The results showed that HRV indicators representing vagal nerve activity significantly increased when stimulation was performed in the morning, and the enhancement of high frequency continued into the recovery period. However, the evening stimulation did not yield similar results. In addition, we found that improvements in the measures of autonomic balance were more pronounced in the presence of lower vagal activity. By increasing the stimulation duration, we also found that the effect of taVNS on HRV was not regulated by duration; in other words, HRV changes only had the best effect at the beginning of stimulation. These studies allowed us to determine the optimal stimulation phase and duration and potentially screen the optimal candidates for taVNS.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Estimulação do Nervo Vago/métodos , Frequência Cardíaca , Nervo Vago/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Sistema Nervoso Autônomo
3.
Front Aging Neurosci ; 14: 865558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493944

RESUMO

Mild Cognitive Impairment (MCI) is an early stage of dementia, which may lead to Alzheimer's disease (AD) in older adults. Therefore, early detection of MCI and implementation of treatment and intervention can effectively slow down or even inhibit the progression of the disease, thus minimizing the risk of AD. Currently, we know that published work relies on an analysis of awake EEG recordings. However, recent studies have suggested that changes in the structure of sleep may lead to cognitive decline. In this work, we propose a sleep EEG-based method for MCI detection, extracting specific features of sleep to characterize neuroregulatory deficit emergent with MCI. This study analyzed the EEGs of 40 subjects (20 MCI, 20 HC) with the developed algorithm. We extracted sleep slow waves and spindles features, combined with spectral and complexity features from sleep EEG, and used the SVM classifier and GRU network to identify MCI. In addition, the classification results of different feature sets (including with sleep features from sleep EEG and without sleep features from awake EEG) and different classification methods were evaluated. Finally, the MCI classification accuracy of the GRU network based on features extracted from sleep EEG was the highest, reaching 93.46%. Experimental results show that compared with the awake EEG, sleep EEG can provide more useful information to distinguish between MCI and HC. This method can not only improve the classification performance but also facilitate the early intervention of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA