RESUMO
In this study, we examined how systemic inflammation affects repair of brain injury. To this end, we created a brain-injury model by stereotaxic injection of ATP, a damage-associated molecular pattern component, into the striatum of mice. Systemic inflammation was induced by intraperitoneal injection of lipopolysaccharide (LPS-ip). An analysis of magnetic resonance images showed that LPS-ip reduced the initial brain injury but slowed injury repair. An immunostaining analysis using the neuronal marker, NeuN, showed that LPS-ip delayed removal of dead/dying neurons, despite the fact that LPS-ip enhanced infiltration of monocytes, which serve to phagocytize dead cells/debris. Notably, infiltrating monocytes showed a widely scattered distribution. Bulk RNAseq analyses showed that LPS-ip decreased expression of genes associated with phagocytosis, with PCR and immunostaining of injured brains confirming reduced levels of Cd68 and Clec7a, markers of phagocytic activity, in monocytes. Collectively, these results suggest that systemic inflammation affects properties of blood monocytes as well as brain cells, resulting in delay in clearing damaged cells and activating repair processes.
Assuntos
Encéfalo , Inflamação , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Monócitos , Fagocitose , Animais , Fagocitose/efeitos dos fármacos , Monócitos/metabolismo , Inflamação/patologia , Encéfalo/patologia , Masculino , Lipopolissacarídeos/farmacologia , Lesões Encefálicas/patologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos dos fármacos , Lectinas Tipo C/metabolismo , Cicatrização , Camundongos , Trifosfato de Adenosina/metabolismo , Molécula CD68RESUMO
BACKGROUND: Brain injury has been suggested as a risk factor for neurodegenerative diseases. Accordingly, defects in the brain's intrinsic capacity to repair injury may result in the accumulation of damage and a progressive loss of brain function. The G2019S (GS) mutation in LRRK2 (leucine rich repeat kinase 2) is the most prevalent genetic alteration in Parkinson's disease (PD). Here, we sought to investigate how this LRRK2-GS mutation affects repair of the injured brain. METHODS: Brain injury was induced by stereotaxic injection of ATP, a damage-associated molecular pattern (DAMP) component, into the striatum of wild-type (WT) and LRRK2-GS mice. Effects of the LRRK2-GS mutation on brain injury and the recovery from injury were examined by analyzing the molecular and cellular behavior of neurons, astrocytes, and monocytes. RESULTS: Damaged neurons express osteopontin (OPN), a factor associated with brain repair. Following ATP-induced damage, monocytes entered injured brains, phagocytosing damaged neurons and producing exosome-like vesicles (EVs) containing OPN through activation of the inflammasome and subsequent pyroptosis. Following EV production, neurons and astrocytes processes elongated towards injured cores. In LRRK2-GS mice, OPN expression and monocytic pyroptosis were decreased compared with that in WT mice, resulting in diminished release of OPN-containing EVs and attenuated elongation of neuron and astrocyte processes. In addition, exosomes prepared from injured LRRK2-GS brains induced neurite outgrowth less efficiently than those from injured WT brains. CONCLUSIONS: The LRRK2-GS mutation delays repair of injured brains through reduced expression of OPN and diminished release of OPN-containing EVs from monocytes. These findings suggest that the LRRK2-GS mutation may promote the development of PD by delaying the repair of brain injury.
Assuntos
Lesões Encefálicas , Exossomos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Monócitos , Mutação , Osteopontina , Animais , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Exossomos/metabolismo , Exossomos/genética , Osteopontina/metabolismo , Osteopontina/genética , Lesões Encefálicas/metabolismo , Lesões Encefálicas/genética , Monócitos/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Masculino , Astrócitos/metabolismoRESUMO
The brain has an intrinsic capacity to repair injury, but the specific mechanisms are largely unknown. In this study, we found that, despite their incipient death, damaged neurons play a key repair role with the help of monocytes infiltrated from blood. Monocytes phagocytosed damaged and/or dying neurons that expressed osteopontin (OPN), with possible subsequent activation of their inflammasome pathway, resulting in pyroptosis. During this process, monocytes released CD63-positive exosome-like vesicles containing OPN. Importantly, following the exosome-like vesicles, neuron and astrocyte processes elongated toward the injury core. In addition, exosomes prepared from the injured brain contained OPN, and enhanced neurite outgrowth of cultured neurons in an OPN-dependent manner. Thus, our results introduce the concept that neurons in the injured brain that are destined to die perceive the stressful condition and begin the regeneration processes through induction of OPN, ultimately executing the repair process with the help of monocytes recruited from the circulation.
Assuntos
Monócitos , Osteopontina , Encéfalo/metabolismo , Monócitos/metabolismo , Neurônios/metabolismo , Osteopontina/metabolismo , FagocitoseRESUMO
Brain injury causes astrocytes to become reactive (astrogliosis). In this study, we compared astrogliosis in acutely injured cortex and striatum of adult FVB/N mice induced by stereotaxic injection of ATP, a component of danger-associated molecular patterns (DAMPs). Interestingly, MR analysis showed that same amount of ATP induced smaller damage in the cortex than in the striatum. However, in histological analysis, thick and dense scar-like astrogliosis was found in the injured cortex near meninges within 2 wk., but not in other regions, including the striatum and even the cortex near the corpus callosum for up to 30 d. There was little regional difference in the number of Ki67(+)-proliferating astrocytes or mRNA expression of inflammatory cytokines. The most prominent difference between regions with and without scar-like astrogliosis was blood vessel formation. Blood vessels highly expressing collagen 1A1 formed densely near meninges, and astrocytes converged on them. In other regions, however, both blood vessels and astrocytes were relatively evenly distributed. Consistent with this, inhibition of blood vessel formation with the vascular endothelial growth factor (VEGF)-blocking antibody, Avastin, attenuated scar-like astrogliosis near meninges. These results indicate that region-specific astrogliosis occurs following brain injury, and that blood vessel formation plays a critical role in scar formation.
Assuntos
Vasos Sanguíneos/patologia , Córtex Cerebral/irrigação sanguínea , Corpo Estriado/irrigação sanguínea , Gliose/patologia , Animais , Biomarcadores/metabolismo , Lesões Encefálicas/patologia , Proliferação de Células , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/patologia , Inflamação/patologia , Antígenos Comuns de Leucócito/metabolismo , Imageamento por Ressonância Magnética , Masculino , Meninges/patologia , Camundongos , Especificidade de Órgãos , Fatores de TempoRESUMO
Monocyte-derived macrophages play a role in the repair of the injured brain. We previously reported that a deficiency of the Parkinson's disease (PD)-associated gene DJ-1 delays repair of brain injury produced by stereotaxic injection of ATP, a component of damage-associated molecular patterns. Here, we show that a DJ-1 deficiency attenuates monocyte infiltration into the damaged brain owing to a decrease in C-C motif chemokine ligand 2 (CCL2) expression in astrocytes. Like DJ-1-knockout (KO) mice, CCL2 receptor (CCR2)-KO mice showed defects in monocyte infiltration and delayed recovery of brain injury, as determined by 9.4 T magnetic resonance imaging analysis and immunostaining for tyrosine hydroxylase and glial fibrillary acid protein. Notably, transcriptome analyses showed that genes related to regeneration and synapse formation were similarly downregulated in injured brains of DJ-1-KO and CCR2-KO mice compared with the injured wild-type brain. These results indicate that defective astrogliosis in DJ-1-KO mice is associated with decreased CCL2 expression and attenuated monocyte infiltration, resulting in delayed repair of brain injury. Thus, delayed repair of brain injury could contribute to the development of PD. MAIN POINTS: A DJ-1 deficiency attenuates infiltration of monocytes owing to a decrease in CCL2 expression in astrocytes, which in turn led to delay in repair of brain injury.
Assuntos
Astrócitos/metabolismo , Lesões Encefálicas/metabolismo , Quimiocina CCL2/biossíntese , Monócitos/metabolismo , Proteína Desglicase DJ-1/deficiência , Animais , Astrócitos/patologia , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/patologia , Proteína Desglicase DJ-1/genéticaRESUMO
Dysfunctional regulation of inflammation may contribute to the progression of neurodegenerative diseases. The results of this study revealed that DJ-1, a Parkinson's disease (PD) gene, regulated expression of prostaglandin D2 synthase (PTGDS) and production of prostaglandin D2 (PGD2), by which DJ-1 enhanced anti-inflammatory function of astrocytes. In injured DJ-1 knockout (KO) brain, expression of tumor necrosis factor-alpha (TNF-α) was more increased, but that of anti-inflammatory heme oxygenase-1 (HO-1) was less increased compared with that in injured wild-type (WT) brain. Similarly, astrocyte-conditioned media (ACM) prepared from DJ-1-KO astrocytes less induced HO-1 expression and less inhibited expression of inflammatory mediators in microglia. With respect to the underlying mechanism, we found that PTGDS that induced expression of HO-1 was lower in DJ-1 KO astrocytes and brains compared with their WT counterparts. In addition, PTGDS levels increased in the injured brain of WT mice, but barely in that of KO mice. We also found that DJ-1 regulated PTGDS expression through Sox9. Thus, Sox9 siRNAs reduced PTGDS expression in WT astrocytes, and Sox9 overexpression rescued PTGDS expression in DJ-1 KO astrocytes. In agreement with these results, ACM from Sox9 siRNA-treated astrocytes and that from Sox9-overexpression astrocytes exerted opposite effects on HO-1 expression and anti-inflammation. These findings suggest that DJ-1 positively regulates anti-inflammatory functions of astrocytes, and that DJ-1 dysfunction contributes to the excessive inflammatory response in PD development.
Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Inflamação/genética , Oxirredutases Intramoleculares/genética , Lipocalinas/genética , Proteína Desglicase DJ-1/genética , Animais , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Astrocytes and microglia support well-being and well-function of the brain through diverse functions in both intact and injured brain. For example, astrocytes maintain homeostasis of microenvironment of the brain through up-taking ions and neurotransmitters, and provide growth factors and metabolites for neurons, etc. Microglia keep surveying surroundings, and remove abnormal synapses or respond to injury by isolating injury sites and expressing inflammatory cytokines. Therefore, their loss and/or functional alteration may be directly linked to brain diseases. Since Parkinson's disease (PD)-related genes are expressed in astrocytes and microglia, mutations of these genes may alter the functions of these cells, thereby contributing to disease onset and progression. Here, we review the roles of astrocytes and microglia in intact and injured brain, and discuss how PD genes regulate their functions.