Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673993

RESUMO

Cucumber (Cucumis sativus L.) is a globally prevalent and extensively cultivated vegetable whose yield is significantly influenced by various abiotic stresses, including drought, heat, and salinity. Transcription factors, such as zinc finger-homeodomain proteins (ZHDs), a plant-specific subgroup of Homeobox, play a crucial regulatory role in stress resistance. In this study, we identified 13 CsZHDs distributed across all six cucumber chromosomes except chromosome 7. Phylogenetic analysis classified these genes into five clades (ZHDI-IV and MIF) with different gene structures but similar conserved motifs. Collinearity analysis revealed that members of clades ZHD III, IV, and MIF experienced amplification through segmental duplication events. Additionally, a closer evolutionary relationship was observed between the ZHDs in Cucumis sativus (C. sativus) and Arabidopsis thaliana (A. thaliana) compared to Oryza sativa (O. sativa). Quantitative real-time PCR (qRT-PCR) analysis demonstrated the general expression of CsZHD genes across all tissues, with notable expression in leaf and flower buds. Moreover, most of the CsZHDs, particularly CsZHD9-11, exhibited varying responses to drought, heat, and salt stresses. Virus-induced gene silencing (VIGS) experiments highlighted the potential functions of CsZHD9 and CsZHD10, suggesting their positive regulation of stomatal movement and responsiveness to drought stress. In summary, these findings provide a valuable resource for future analysis of potential mechanisms underlying CsZHD genes in response to stresses.


Assuntos
Cucumis sativus , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Cucumis sativus/genética , Cucumis sativus/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Secas , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica
2.
J Adv Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609051

RESUMO

The multicellular trichomes of cucumber (Cucumis sativus L.) serve as the primary defense barrier against external factors, whose impact extends beyond plant growth and development to include commercial characteristics of fruits. The aphid (Aphis gossypii Glover) is one of prominent pests in cucumber cultivation. However, the relationship between physical properties of trichomes and the aphid resistance at molecular level remains largely unexplored. Here, a spontaneous mutant trichome morphology (tm) was characterized by increased susceptibility towards aphid. Further observations showed the tm exhibited a higher and narrower trichome base, which was significantly distinguishable from that in wild-type (WT). We conducted map-based cloning and identified the candidate, CsTM, encoding a C-lectin receptor-like kinase. The knockout mutant demonstrated the role of CsTM in trichome morphogenesis. The presence of SNP does not regulate the relative expression of CsTM, but diminishes the CsTM abundance of membrane proteins in tm. Interestingly, CsTM was found to interact with CsTIP1;1, which encodes an aquaporin with extensive reports in plant resistance and growth development. The subsequent aphid resistance experiments revealed that both CsTM and CsTIP1;1 regulated the development of trichomes and conferred resistance against aphid by affecting cytoplasmic H2O2 contents. Transcriptome analysis revealed a significant enrichment of genes associated with pathogenesis, calcium binding and cellulose synthase. Overall, our study elucidates an unidentified mechanism that CsTM-CsTIP1;1 alters multicellular trichome morphology and enhances resistance against aphid, thus providing a wholly new perspective for trichome morphogenesis in cucumber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA