Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 17(1): 244, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819407

RESUMO

BACKGROUND: Microglial polarization is a dynamic response to acute brain hypoxia induced by stroke and traumatic brain injury (TBI). However, studies on the polarization of microglia in chronic cerebral circulation insufficiency (CCCI) are limited. Our objective was to investigate the effect of CCCI on microglial polarization after chronic brain hypoperfusion (CBH) and explore the underlying molecular mechanisms. METHODS: CBH model was established by bilateral common carotid artery occlusion (2-vessel occlusion, 2VO) in rats. Using the stereotaxic injection technique, lenti-pre-miR-195 and anti-miR-195 oligonucleotide fragments (lenti-pre-AMO-miR-195) were injeted into the CA1 region of the hippocampus to construct animal models with high or low expression of miR-195. Immunofluorescence staining and flow cytometry were conducted to examine the status of microglial polarization. In vitro, Transwell co-culture system was taken to investigate the role of miR-195 on neuronal-microglial communication through CX3CL1-CX3CR1 signaling. Quantitative real-time PCR was used to detect the level of miR-195 and inflammatory factors. The protein levels of CX3CL1 and CX3CR1 were evaluated by both western blot and immunofluorescence staining. RESULTS: CBH induced by 2VO initiated microglial/macrophage activation in the rat hippocampus from 1 week to 8 weeks, as evaluated by increased ratio of (CD68+ and CD206+)/Iba-1 immunofluorescence. And the microglial/macrophage polarization was shifted towards the M1 phenotype at 8 weeks following CBH. The expression of CX3CL1 and CX3CR1 was increased in the hippocampus of 2VO rats at 8 weeks. An in vitro study in a Transwell co-culture system demonstrated that transfection of either primary-cultured neonatal rat neurons (NRNs) or microglial BV2 cells with AMO-195-induced M1 polarization of BV2 cells and increased CX3CL1 and CX3CR1 expression and that these effects were reversed by miR-195 mimics. Furthermore, the upregulation of miR-195 induced by lenti-pre-miR-195 injection prevented microglial/macrophage polarization to M1 phenotype triggered by hippocampal injection of lenti-pre-AMO-miR-195 and 2VO surgery. CONCLUSIONS: Our findings conclude that downregulation of miR-195 in the hippocampus is involved in CBH-induced microglial/macrophage polarization towards M1 phenotype by governing communication between neurons and microglia through the regulation of CX3CL1 and CX3CR1 signaling. This indicates that miR-195 may provide a new strategy for clinical prevention and treatment of CBH.


Assuntos
Isquemia Encefálica/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Hipocampo/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Animais , Isquemia Encefálica/genética , Linhagem Celular , Polaridade Celular/fisiologia , Modelos Animais de Doenças , Regulação para Baixo , Regulação da Expressão Gênica , Masculino , MicroRNAs/genética , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
2.
Exp Neurol ; 332: 113389, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32580014

RESUMO

Chronic cerebral hypoperfusion (CCH) promotes the development of Alzheimer's pathology. However, whether and how CCH impairs the synaptic vesicle trafficking is still unclear. In the present study, we found that the hippocampal glutamatergic vesicle trafficking was impaired as indicated by a significant shortened delayed response enhancement (DRE) phase in CA3-CA1 circuit and decreased synapsin I in CCH rats suffering from bilateral common carotid artery occlusion (2VO). Further study showed an upregulated miR-153 in the hippocampus of 2VO rats. In vitro, overexpression of miR-153 downregulated synapsin I by binding the 3'UTRs of SYN1 mRNAs, which was prevented by its antisense AMO-153 and miRNA-masking antisense oligodeoxynucleotides (SYN1-ODN). In vivo, the upregulation of miR-153 elicited similar reduced DRE phase and synapsin I deficiency as CCH. Furthermore, miR-153 knockdown rescued the downregulated synapsin I and shortened DRE phase in 2VO rats. Our results demonstrate that CCH impairs hippocampal glutamatergic vesicle trafficking by upregulating miR-153, which suppresses the expression of synapsin I at the post-transcriptional level. These results will provide important references for drug research and treatment of vascular dementia.


Assuntos
Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/fisiopatologia , Hipocampo/fisiopatologia , MicroRNAs/genética , Sinapsinas/genética , Vesículas Sinápticas , Regiões 3' não Traduzidas , Animais , Estenose das Carótidas/fisiopatologia , Regulação para Baixo , Glutamatos/metabolismo , Masculino , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley , Sinapsinas/biossíntese
3.
Cell Commun Signal ; 18(1): 57, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252776

RESUMO

BACKGROUND: Chronic brain hypoperfusion (CBH) is closely related to Alzheimer's disease (AD) and vascular dementia (VaD). Meanwhile, synaptic pathology plays a prominent role in the initial stage of AD and VaD. However, whether and how CBH impairs presynaptic plasticity is currently unclear. METHODS: In the present study, we performed a battery of techniques, including primary neuronal culture, patch clamp, stereotaxic injection of the lentiviral vectors, morris water maze (MWM), dual luciferase reporter assay, FM1-43 fluorescence dye evaluation, qRT-PCR and western blot, to investigate the regulatory effect of miR-153 on hippocampal synaptic vesicle release both in vivo and in vitro. The CBH rat model was generated by bilateral common carotid artery ligation (2VO). RESULTS: Compared to sham rats, 2VO rats presented decreased field excitatory postsynaptic potential (fEPSP) amplitude and increased paired-pulse ratios (PPRs) in the CA3-CA1 pathway, as well as significantly decreased expression of multiple vesicle fusion-related proteins, including SNAP-25, VAMP-2, syntaxin-1A and synaptotagmin-1, in the hippocampi. The levels of microRNA-153 (miR-153) were upregulated in the hippocampi of rats following 2VO surgery, and in the plasma of dementia patients. The expression of the vesicle fusion-related proteins affected by 2VO was inhibited by miR-153, elevated by miR-153 inhibition, and unchanged by binding-site mutation or miR masks. FM1-43 fluorescence images showed that miR-153 blunted vesicle exocytosis, but this effect was prevented by either 2'-O-methyl antisense oligoribonucleotides to miR-153 (AMO-153) and miR-masking of the miR-153 binding site in the 3' untranslated region (3'UTR) of the Snap25, Vamp2, Stx1a and Syt1 genes. Overexpression of miR-153 by lentiviral vector-mediated miR-153 mimics (lenti-pre-miR-153) decreased the fEPSP amplitude and elevated the PPR in the rat hippocampus, whereas overexpression of the antisense molecule (lenti-AMO-153) reversed these changes triggered by 2VO. Furthermore, lenti-AMO-153 attenuated the cognitive decline of 2VO rats. CONCLUSIONS: Overexpression of miR-153 controls CBH-induced presynaptic vesicle release impairment by posttranscriptionally regulating the expression of four vesicle release-related proteins by targeting the 3'UTRs of the Stx1a, Snap25, Vamp2 and Syt1 genes. These findings identify a novel mechanism of presynaptic plasticity impairment during CBH, which may be a new drug target for prevention or treatment of AD and VaD. Video Abstract.


Assuntos
Demência Vascular/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , MicroRNAs/fisiologia , Vesículas Sinápticas/metabolismo , Idoso , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagmina I/metabolismo , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
4.
J Mol Neurosci ; 70(6): 861-870, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32125624

RESUMO

Whether blood amyloid-ß (Aß) could be a peripheral biomarker of Alzheimer's disease (AD) remains in dispute. In the present study, we conducted a meta-analysis with 19 citations searched from Embase, PubMed, and the Cochrane Library database. Weighted mean difference (WMD) with 95% confidence intervals (CIs) was used to estimate the effect size. We firstly analyzed the plasma Aß40, Aß42, and Aß42/Aß40 ratio in AD and control group subjects. However, only a lower level of plasma Aß42 was figured out in AD group subjects with weak statistical significance (WMD 1.82; 95% CI 0.59, 3.06; P = 0.004; I2 = 84%). We considered that the medical histories of control subjects could influence the biomarker ability of plasma Aß. Therefore, subgroup analyses were then carried out based on a new recruiting criterion for control subjects, defining as no afflictions of any Aß-related diseases. Surprisingly, AD group subjects showed a significant decrease in plasma Aß42/Aß40 ratio with low heterogeneity among studies (WMD 0.02; 95% CI 0.02, 0.02; P < 0.00001; I2 = 0%). Moreover, not only the Aß42/Aß40 ratio but also Aß42 and Aß40 were indifferent between AD and pseudo-control subjects which might be afflicted with Aß-related diseases. This meta-analysis demonstrated that medical histories of control subjects were interference factors impeding plasma Aß to be a biomarker of AD.


Assuntos
Doença de Alzheimer/sangue , Peptídeos beta-Amiloides/sangue , Fragmentos de Peptídeos/sangue , Doença de Alzheimer/diagnóstico , Biomarcadores/sangue , Humanos , Anamnese/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA