Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891365

RESUMO

The plant hormone jasmonic acid plays an important role in plant growth and development, participating in many physiological processes, such as plant disease resistance, stress resistance, organ development, root growth, and flowering. With the improvement in living standards, people have higher requirements regarding the quality of vegetables. However, during the growth process of vegetables, they are often attacked by pests and diseases and undergo abiotic stresses, resulting in their growth restriction and decreases in their yield and quality. Therefore, people have found many ways to regulate the growth and quality of vegetable crops. In recent years, in addition to the role that JA plays in stress response and resistance, it has been found to have a regulatory effect on crop quality. Therefore, this study aims to review the jasmonic acid accumulation patterns during various physiological processes and its potential role in vegetable development and quality formation, as well as the underlying molecular mechanisms. The information provided in this manuscript sheds new light on the improvements in vegetable yield and quality.

2.
PeerJ ; 10: e14602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570011

RESUMO

Soil salinity has been an increasing problem worldwide endangering crop production and human food security. It is an ideal strategy to excavate stress resistant genes and develop salt tolerant crops. NAC (no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon) transcription factors have been demonstrated to be involved in salt stress response. However, relevant studies have not been observed in garlic, an important vegetable consumed in the world. In this study, a total of 46 AsNAC genes encoding NAC proteins were identified in garlic plant by transcriptome data. Phylogenetic analysis showed that the examined AsNAC proteins were clustered into 14 subgroups. Motif discovery revealed that the conserved domain region was mainly composed of five conserved subdomains. Most of the genes selected could be induced by salt stress in different tissues, indicating a potential role in salt stress response. Further studies may focus on the molecular mechanisms of the AsNAC genes in salt stress response. The results of the current work provided valuable resources for researchers aimed at developing salt tolerant crops.


Assuntos
Arabidopsis , Alho , Humanos , Fatores de Transcrição/genética , Transcriptoma , Arabidopsis/genética , Alho/genética , Ativação Transcricional , Meristema/genética , Filogenia , Cotilédone/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Estresse Salino/genética
3.
Protoplasma ; 255(3): 841-850, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29243177

RESUMO

Brassinosteroids (BRs) can effectively alleviate the oxidative stress caused by Ca(NO3)2 in cucumber seedlings. The root system is an essential organ in plants due to its roles in physical anchorage, water and nutrient uptake, and metabolite synthesis and storage. In this study, 24-epibrassinolide (EBL) was applied to the cucumber seedling roots under Ca(NO3)2 stress, and the resulting chemical and anatomical changes were characterized to investigate the roles of BRs in alleviating salinity stress. Ca(NO3)2 alone significantly induced changes in the components of cell wall, anatomical structure, and expression profiles of several lignin biosynthetic genes. Salt stress damaged several metabolic pathways, leading to cell wall reassemble. However, EBL promoted cell expansion and maintained optimum length of root system, alleviating the oxidative stress caused by Ca(NO3)2. The continuous transduction of EBL signal thickened the secondary cell wall of casparian band cells, thus resisting against ion toxicity and maintaining water transport.


Assuntos
Brassinosteroides/farmacologia , Compostos de Cálcio/toxicidade , Parede Celular/metabolismo , Cucumis sativus/metabolismo , Nitratos/toxicidade , Raízes de Plantas/metabolismo , Esteroides Heterocíclicos/farmacologia , Estresse Fisiológico , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Parede Celular/efeitos dos fármacos , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lignina/biossíntese , Raízes de Plantas/efeitos dos fármacos , Polissacarídeos/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
4.
Front Plant Sci ; 8: 120, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28220137

RESUMO

Polyamines are phytohormones that regulate plant growth and development as well as the response to environmental stresses. To evaluate their functions in high-temperature stress responses, the effects of exogenous spermidine (Spd) were determined in tomato leaves using two-dimensional electrophoresis and MALDI-TOF/TOF MS. A total of 67 differentially expressed proteins were identified in response to high-temperature stress and/or exogenous Spd, which were grouped into different categories according to biological processes. The four largest categories included proteins involved in photosynthesis (27%), cell rescue, and defense (24%), protein synthesis, folding and degradation (22%), and energy and metabolism (13%). Exogenous Spd up-regulated most identified proteins involved in photosynthesis, implying an enhancement in photosynthetic capacity. Meanwhile, physiological analysis showed that Spd could improve net photosynthetic rate and the biomass accumulation. Moreover, an increased high-temperature stress tolerance by exogenous Spd would contribute to the higher expressions of proteins involved in cell rescue and defense, and Spd regulated the antioxidant enzymes activities and related genes expression in tomato seedlings exposed to high temperature. Taken together, these findings provide a better understanding of the Spd-induced high-temperature resistance by proteomic approaches, providing valuable insight into improving the high-temperature stress tolerance in the global warming epoch.

5.
Physiol Plant ; 160(1): 33-45, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27935073

RESUMO

Nitric oxide (NO) and hydrogen peroxide (H2 O2 ), two important signaling molecules, are stimulated in plants by abiotic stresses. In this study, we investigated the role of NO and its interplay with H2 O2 in the response of self-grafted (S-G) and salt-tolerant pumpkin-grafted (Cucurbita maxima × C. moschata) cucumber seedlings to 80 mM Ca(NO3 )2 stress. Endogenous NO and H2 O2 production in S-G seedlings increased in a time-dependent manner, reaching maximum levels after 24 h of Ca(NO3 )2 stress. In contrast, a transient increase in NO production, accompanied by H2 O2 accumulation, was observed at 2 h in rootstock-grafted plants. Nw -Nitro-l-Arg methyl ester hydrochloride (l-NAME), an inhibitor of nitric oxide synthase (NOS), tungstate, an inhibitor of nitrate reductase (NR), and 2-(4-carboxyphenyl)-4,4,5,5-tetramethy-limidazoline-1-oxyl-3-oxide (cPTIO), a scavenger of NO, were found to significantly inhibit NO accumulation induced by salt stress in rootstock-grafted seedlings. H2 O2 production was unaffected by these stress conditions. Ca(NO3 )2 stress-induced NO accumulation was blocked by pretreatment with an H2 O2 scavenger (dimethylthiourea, DMTU) and an inhibitor of NADPH oxidase (diphenyleneiodonium, DPI). In addition, maximum quantum yield of PSII (Fv/Fm), as well as the activities and transcript levels of antioxidant enzymes, were significantly decreased by salt stress in rootstock grafted seedlings after pretreatment with these above inhibitors; antioxidant enzyme transcript levels and activities were higher in rootstock-grafted seedlings compared with S-G seedlings. These results suggest that rootstock grafting could alleviate the oxidative damage induced by Ca(NO3 )2 stress in cucumber seedlings, an effect that may be attributable to the involvement of NO in H2 O2 -dependent antioxidative metabolism.


Assuntos
Compostos de Cálcio/toxicidade , Cucumis sativus/metabolismo , Cucurbita/metabolismo , Peróxido de Hidrogênio/farmacologia , Óxido Nítrico/metabolismo , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/genética , Cucurbita/genética , Estresse Oxidativo/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo
6.
Plant Physiol Biochem ; 105: 21-28, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27070289

RESUMO

Graft compatibility between rootstock and scion is the most important factor influencing the survival of grafted plants. In this study, we used two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to investigate differences in leaf proteomes of graft-compatible and graft-incompatible cucumber (Cucumis sativus L.)/pumpkin (Cucurbita L.) combinations. Cucumber seedlings were used as the scions and two pumpkin cultivars with strongly contrasting grafting compatibilities were used as the rootstocks. Non-grafted and self-grafted cucumber seedlings served as control groups. An average of approximately 500 detectable spots were observed on each 2-DE gel. A total of 50 proteins were differentially expressed in response to self-grafting, compatible-rootstock grafting, and incompatible-rootstock grafting and were all successfully identified by MALDI-TOF/TOF MS. The regulation of Calvin cycle, photosynthetic apparatus, glycolytic pathway, energy metabolism, protein biosynthesis and degradation, and reactive oxygen metabolism will probably contribute to intensify the biomass and photosynthetic capacity in graft-compatible combinations. The improved physiological and growth characteristics of compatible-rootstock grafting plants are the result of the higher expressions of proteins involved in photosynthesis, carbohydrate and energy metabolism, and protein metabolism. At the same time, the compatible-rootstock grafting regulation of stress defense, amino acid metabolism, and other metabolic functions also plays important roles in improvement of plant growth.


Assuntos
Cucumis sativus/metabolismo , Proteínas de Plantas/metabolismo , Proteômica/métodos , Plântula/metabolismo , Autoincompatibilidade em Angiospermas/fisiologia , Análise por Conglomerados , Eletroforese em Gel Bidimensional , Redes e Vias Metabólicas , Fotossíntese , Folhas de Planta/metabolismo
7.
Plant Cell Rep ; 35(5): 1081-101, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26931454

RESUMO

KEY MESSAGE: The application of exogenous 24-epibrassinolide promotes Brassinosteroids intracellular signalling in cucumber, which leads to differentially expressed proteins that participate in different life process to relieve Ca(NO 3 ) 2 damage. NO3 (-) and Ca(2+) are the main anion and cation of soil secondary salinization during greenhouse cultivation. Brassinosteroids (BRs), steroidal phytohormones, regulate various important physiological and developmental processes and are used against abiotic stress. A two-dimensional electrophoresis gel coupled with MALDI-TOF/TOF MS was performed to investigate the effects of exogenous 24-epibrassinolide (EBL) on proteomic changes in cucumber seedling roots under Ca(NO3)2 stress. A total of 80 differentially accumulated protein spots in response to stress and/or exogenous EBL were identified and grouped into different categories of biological processes according to Gene Ontology. Under Ca(NO3)2 stress, proteins related to nitrogen metabolism and lignin biosynthesis were induced, while those related to cytoskeleton organization and cell-wall neutral sugar metabolism were inhibited. However, the accumulation of abundant proteins involved in protein modification and degradation, defence mechanisms against antioxidation and detoxification and lignin biosynthesis by exogenous EBL might play important roles in salt tolerance. Real-time quantitative PCR was performed to investigate BR signalling. BR signalling was induced intracellularly under Ca(NO3)2 stress. Exogenous EBL can alleviate the root indices, effectively reduce the Ca(2+) content and increase the K(+) content in cucumber roots under Ca(NO3)2 stress. This study revealed the differentially expressed proteins and BR signalling-associated mRNAs induced by EBL in cucumber seedling roots under Ca(NO3)2 stress, providing a better understanding of EBL-induced salt resistance in cucumber seedlings. The mechanism for alleviation provides valuable insight into improving Ca(NO3)2 stress tolerance of other horticultural plants.


Assuntos
Brassinosteroides/metabolismo , Cucumis sativus/fisiologia , Proteínas de Plantas/metabolismo , Proteômica , Transdução de Sinais , Esteroides Heterocíclicos/farmacologia , Brassinosteroides/farmacologia , Compostos de Cálcio/farmacologia , Metabolismo dos Carboidratos , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/genética , Eletroforese em Gel Bidimensional , Nitratos/farmacologia , Fitosteróis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Tolerância ao Sal , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Cloreto de Sódio/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico
8.
J Plant Res ; 129(1): 79-91, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26659857

RESUMO

Ca(NO3)2 stress is one of the most serious constraints to plants production and limits the plants growth and development. Application of polyamines is a convenient and effective approach for enhancing plant salinity tolerance. The present investigation aimed to discover the photosynthetic carbon-nitrogen (C-N) mechanism underlying Ca(NO3)2 stress tolerance by spermidine (Spd) of cucumber (Cucumis sativus L. cv. Jinyou No. 4). Seedling growth and photosynthetic capacity [including net photosynthetic rate (P N), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr)] were significantly inhibited by Ca(NO3)2 stress (80 mM). However, a leaf-applied Spd (1 mM) treatment alleviated the reduction in growth and photosynthesis in cucumber caused by Ca(NO3)2 stress. Furthermore, the application of exogenous Spd significantly decreased the accumulation of NO3 (-) and NH4 (+) caused by Ca(NO3)2 stress and remarkably increased the activities of N metabolism enzymes simultaneously. In addition, photosynthesis N-use efficiency (PNUE) and free amino acids were significantly enhanced by exogenous Spd in response to Ca(NO3)2 stress, thus promoting the biosynthesis of N containing compounds and soluble protein. Also, the amounts of several carbohydrates (including sucrose, fructose and glucose), total C content and the C/N radio increased significantly in the presence of Spd. Based on our results, we suggest that exogenous Spd could effectively accelerate nitrate transformation into amino acids and improve cucumber plant photosynthesis and C assimilation, thereby enhancing the ability of the plants to maintain their C/N balance, and eventually promote the growth of cucumber plants under Ca(NO3)2 stress.


Assuntos
Cucumis sativus/fisiologia , Fotossíntese , Espermidina/metabolismo , Estresse Fisiológico , Carbono/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA