Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15123, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956272

RESUMO

The OVATE gene family plays an important role in regulating the development of plant organs and resisting stress, but its expression characteristics and functions in sorghum have not been revealed. In this study, we identified 26 OVATE genes in the sorghum BTx623 genome, which were divided into four groups and distributed unevenly across 9 chromosomes. Evolutionary analysis showed that after differentiation between sorghum and Arabidopsis, the OVATE gene family may have experienced unique expansion events, and all OVATE family members were negatively selected. Transcriptome sequencing and RT-qPCR results showed that OVATE genes in sorghum showed diverse expression characteristics, such as gene SORBl_3001G468900 and SORBl_3009G173400 were significantly expressed in seeds, while SORBI_3005G042700 and SORBI_3002G417700 were only highly expressed in L1. Meantime, in the promoter region, a large number of hormone-associated cis-acting elements were identified, and these results suggest that members of the OVATE gene family may be involved in regulating specific development of sorghum leaves and seeds. This study improves the understanding of the OVATE gene family of sorghum and provides important clues for further exploration of the function of the OVATE gene family.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Folhas de Planta , Proteínas de Plantas , Sementes , Sorghum , Sorghum/genética , Sorghum/metabolismo , Sementes/genética , Sementes/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Filogenia , Perfilação da Expressão Gênica , Evolução Molecular , Regiões Promotoras Genéticas , Cromossomos de Plantas/genética , Genes de Plantas
2.
Front Plant Sci ; 15: 1353024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903445

RESUMO

P-type ATPase family members play important roles in plant growth and development and are involved in plant resistance to various biotic and abiotic factors. Extensive studies have been conducted on the P-type ATPase gene families in Arabidopsis thaliana and rice but our understanding in potato remains relatively limited. Therefore, this study aimed to screen and analyze 48 P-type ATPase genes from the potato (Solanum tuberosum L.) genome database at the genome-wide level. Potato P-type ATPase genes were categorized into five subgroups based on the phylogenetic classification of the reported species. Additionally, several bioinformatic analyses, including gene structure analysis, chromosomal position analysis, and identification of conserved motifs and promoter cis-acting elements, were performed. Interestingly, the plasma membrane H+-ATPase (PM H+-ATPase) genes of one of the P3 subgroups showed differential expression in different tissues of potato. Specifically, PHA2, PHA3, and PHA7 were highly expressed in the roots, whereas PHA8 was expressed in potatoes only under stress. Furthermore, the small peptide Pep13 inhibited the expression of PHA1, PHA2, PHA3, and PHA7 in potato roots. Transgenic plants heterologously overexpressing PHA2 displayed a growth phenotype sensitive to Pep13 compared with wild-type plants. Further analysis revealed that reducing potato PM H+-ATPase enzyme activity enhanced resistance to Pep13, indicating the involvement of PM H+-ATPase in the physiological process of potato late blight and the enhancement of plant disease resistance. This study confirms the critical role of potato PHA2 in resistance to Pep13.

3.
Front Plant Sci ; 14: 1274260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053773

RESUMO

Introduction: Aluminum (Al)-activated malate transporters (ALMTs) play an important role in the response to Al toxicity, maintenance of ion homeostasis balance, mineral nutrient distribution, and fruit quality development in plants. However, the function of the StALMT gene family in potato remains unknown. Methods and results: In this study, 14 StALMT genes were identified from the potato genome, unevenly distributed on seven different chromosomes. Collinearity and synteny analyses of ALMT genes showed that potatoes had 6 and 22 orthologous gene pairs with Arabidopsis and tomatoes, respectively, and more than one syntenic gene pair was identified for some StALMT gene family members. Real-time quantitative polymerase chain reaction (qPCR) results showed differential expression levels of StALMT gene family members in different tissues of the potato. Interestingly, StALMT1, StALMT6, StALMT8, StALMT10, and StALMT12 had higher expression in the root of the potato cultivar Qingshu No. 9. After being subjected to Al3+ stress for 24 h, the expression of StALMT6 and StALMT10 in roots was evidently increased, displaying their decisive role in Al3+ toxicity. Discussion: In addition, overexpression of StALMT6 and StALMT10 in Arabidopsis enhanced its tolerance to Al toxicity. These results indicate that StALMT6 and StALMT10 impart Al3+ resistance in the potato, establishing the foundation for further studies of the biological functions of these genes.

4.
BMC Genom Data ; 24(1): 62, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924022

RESUMO

BACKGROUND: As an important food and cash crop, identification of DNA molecular markers is of great significance for molecular marker-assisted breeding of Sorghum (Sorghum bicolor (L.) moench). Although some sorghum-related mutation databases have been published, the special SSR and SV databases still need to be constructed and updated. RESULTS: In this study, the quality of 18 different sorghum genomes was evaluated, and two genomes were assembled at chromosome level. Through the identification and comparative analysis of SSR loci in these genomes, the distribution characteristics of SSR in the above sorghum genomes were initially revealed. At the same time, five representative reference genomes were selected to identify the structural variation of sorghum. Finally, a convenient SSR/SV database of sorghum was constructed by integrating the above results ( http://www.sorghum.top:8079/ ; http://43.154.129.150:8079/ ; http://47.106.184.91:8079/ ). Users can query the information of related sites and primer pairs. CONCLUSIONS: Anyway, our research provides convenience for sorghum researchers and will play an active role in sorghum molecular marker-assisted breeding.


Assuntos
Sorghum , Sorghum/genética , Melhoramento Vegetal , Marcadores Genéticos/genética , Genoma de Planta/genética , Repetições de Microssatélites/genética
5.
BMC Genomics ; 24(1): 362, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380940

RESUMO

BACKGROUND: PYL (Pyrabactin resistance 1-like) protein is a receptor of abscisic acid (ABA), which plays an important role in ABA signaling and influences plant growth and development and stress response. However, studies on PYL gene family in tea plants have not been reported. RESULTS: In this study, we identified 20 PYL genes from the reference genome of tea plant ('Shuchazao'). Phylogeny analysis indicated that PYLs from tea and other plant species were clustered into seven groups. The promoter region of PYL genes contains a large number of cis-elements related to hormones and stresses. A large number of PYL genes responding to stress were found by analyzing the expression levels of abiotic stress and biotic stress transcriptome data. For example, CSS0047272.1 were up-regulated by drought stress, and CSS0027597.1 could respond to both anthracnose disease and geometrid feeding treatments. In addition, 10 PYL genes related to growth and development were verified by RT-qPCR and their tissue expression characteristics were revealed. CONCLUSIONS: Our results provided a comprehensive characteristic of the PYL gene family in tea plants and provided an important clue for further exploring its functions in the growth and development, and resistance to stress of tea plants.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Ácido Abscísico , Secas , Transcriptoma , Chá
6.
BMC Plant Biol ; 22(1): 513, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36324064

RESUMO

Genome variation not only plays an important role in plant phenotypic modeling and adaptive evolution, but also enhances population genetic diversity and regulates gene expression. The tea tree (Camellia sinensis) has a large genome (~ 3.0 Gb), making the identification of genome-wide variants time-consuming and expensive. With the continuous publication of a large number of different types of population sequencing data, there is a lack of an open platform to integrate these data and identify variants in the tea plant genome.To integrate the genetic variation confidence in the tea plant population genome, 238 whole-genome resequencing, 213 transcriptome sequencing, and 96 hybrid F1 individuals with a total of more than 20 Tb were collected for mutation site identification. Based on these variations information, we constructed the first tea tree variation web service database TeaPVs ( http://47.106.184.91:8025/ and http://liushang.top:8025/ ). It supports users to search all SNP, Indel, SV mutations and SSR/Polymorphic SSR sequences by location or gene ID. Furthermore, the website also provides the functions of gene expression search of different transcriptome, sequence blast, sequence extraction of CDS and mutation loci, etc.The features of the TeaPVs database make it a comprehensive tea plant genetic variation bioinformatics platform for researchers, and will also be helpful for revealing new functional mutations in the tea plant genome and molecular marker-assisted breeding.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Melhoramento Vegetal , Genoma de Planta/genética , Chá , Genômica
7.
Front Plant Sci ; 13: 1008408, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212328

RESUMO

OVATE genes are a new class of transcriptional repressors with important regulatory roles in plant growth and development. Through genome-wide analysis of the OVATE gene family of tea plants, 26 and 13 family members were identified in cultivated and ancient tea plants, respectively. Syntenic results showed that OVATE gene family in cultivated tea plants may have experienced a special expansion event. Based on phylogenetic tree analysis, all OVATE genes were divided into four groups, and the third group had the largest number, reaching 16. Transcriptome data from different organs and populations indicated that many OVATE family members were highly expressed in young shoots and leaves, and their expression levels gradually decreased as tea leaves developed. Finally, the expression trends of the six key candidate genes were verified by RT-qPCR, which were consistent with the transcriptome results, indicating that the ovate gene family plays an important role in regulating the process of tea leaf development. In addition, we identified a key structural variation with a length of 184 bp, and the population genotyping showed that it was closely related to the area of tea leaves. Our research provides an important clue for further exploring the function of ovate gene family in tea plants and the development mechanism of tea leaves.

8.
Bioact Mater ; 18: 284-299, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35387161

RESUMO

Surgical failures, caused by postoperative infections of bone implants, are commonly met, which cannot be treated precisely with intravenous antibiotics. Photothermal therapy (PTT) and photodynamic therapy (PDT) have attracted widespread attention due to their non-invasive antibacterial effects on tissues and no bacterial resistance, which may be an excellent approach to solve infections related to bone implants for biodegradable magnesium alloys. Herein, a sodium copper chlorophyllin (SCC) with a porphyrin ring induced Ca-P coating was prepared on AZ31 magnesium alloy via layer-by-layer (LbL) assembly. The morphology and composition of the samples were characterized through field emission scanning electron microscope (FE-SEM) with affiliated energy dispersive spectrometer (EDS), X-ray diffractometer (XRD), and Fourier infrared spectrometer (FTIR) and X-ray photoelectron spectrometer (XPS) as well. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and hydrogen evolution experiments were employed to evaluate the corrosion behavior of the samples. Atomic absorption spectrophotometer was used to measure Cu elemental content of different immersion periods. Cytocompatibility and antibacterial performance of the coatings were probed using in vitro cytotoxicity tests (MTT assay), live/dead cell staining and plate counting method. The results showed that the obtained (Ca-P/SCC)10 coating exhibited good corrosion resistance, antimicrobial activity (especially under 808 nm irradiation) and biocompatibility. The antibacterial rates for E. coli and S. aureus were 99.9% and 99.8%, respectively; and the photothermal conversion efficiency was as high as 42.1%. Triple antibacterial mechanisms including photodynamic, photothermal reactions and copper-ions release were proposed. This coating exhibited a promising application for biodegradable magnesium alloys.

9.
Plant J ; 110(1): 243-261, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35043493

RESUMO

Flavan-3-ols are abundant in the tea plant (Camellia sinensis) and confer tea with flavor and health benefits. We recently found that alternative splicing of genes is likely involved in the regulation of flavan-3-ol biosynthesis; however, the underlying regulatory mechanisms remain unknown. Here, we integrated metabolomics and transcriptomics to construct metabolite-gene networks in tea leaves, collected over five different months and from five spatial positions, and found positive correlations between endogenous jasmonic acid (JA), flavan-3-ols, and numerous transcripts. Transcriptome mining further identified CsJAZ1, which is negatively associated with flavan-3-ols formation and has three CsJAZ1 transcripts, one full-length (CsJAZ1-1), and two splice variants (CsJAZ1-2 and -3) that lacked 3' coding sequences, with CsJAZ1-3 also lacking the coding region for the Jas domain. Confocal microscopy showed that CsJAZ1-1 was localized to the nucleus, while CsJAZ1-2 and CsJAZ1-3 were present in both the nucleus and the cytosol. In the absence of JA, CsJAZ1-1 was bound to CsMYC2, a positive regulator of flavan-3-ol biosynthesis; CsJAZ1-2 functioned as an alternative enhancer of CsJAZ1-1 and an antagonist of CsJAZ1-1 in binding to CsMYC2; and CsJAZ1-3 did not interact with CsMYC2. In the presence of JA, CsJAZ1-3 interacted with CsJAZ1-1 and CsJAZ1-2 to form heterodimers that stabilized the CsJAZ1-1-CsMYC2 and CsJAZ1-2-CsMYC2 complexes, thereby repressing the transcription of four genes that act late in the flavan-3-ol biosynthetic pathway. These data indicate that the alternative splicing variants of CsJAZ1 coordinately regulate flavan-3-ol biosynthesis in the tea plant and improve our understanding of JA-mediated flavan-3-ol biosynthesis.


Assuntos
Camellia sinensis , Processamento Alternativo/genética , Camellia sinensis/genética , Camellia sinensis/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Chá/metabolismo
10.
Food Res Int ; 149: 110680, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600682

RESUMO

Spreading is an indispensable process in the aroma formation of premium green tea. In this study, volatile metabolomics and transcriptomics were performed for three tea plant cultivars to investigate the mechanism of changes occurring in volatile compounds during green tea spreading. The content of primary aroma compounds significantly increased after spreading, the Wickremasinghe-Yamanishi ratio decreased and the Owuor's flavor index increased with the extension of spreading time, and the degree of aroma production was genotype-dependent. Volatile terpenes and fatty acid-derived volatiles were the principal aroma volatiles that accumulated during the spreading of green tea, and the trends of their changes were consistent with the expression pattern of related synthesis pathway genes, indicating that they were primarily derived from de novo synthesis rather than glycoside hydrolysis. Two co-expression networks that were highly correlated with variations in the volatile component contents during the spreading process were identified via WGCNA. Our results provide insights into spreading that can be considered to improve the quality of green tea.


Assuntos
Chá , Compostos Orgânicos Voláteis , Odorantes/análise , Fenótipo , Folhas de Planta/química , Folhas de Planta/genética , Transcriptoma , Compostos Orgânicos Voláteis/análise
11.
Front Plant Sci ; 12: 705285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394160

RESUMO

High-quality genetic maps play important roles in QTL mapping and molecular marker-assisted breeding. Tea leaves are not only important vegetative organs but are also the organ for harvest with important economic value. However, the key genes and genetic mechanism of regulating leaf area have not been clarified. In this study, we performed whole-genome resequencing on "Jinxuan," "Yuncha 1" and their 96 F1 hybrid offspring. From the 1.84 Tb of original sequencing data, abundant genetic variation loci were identified, including 28,144,625 SNPs and 2,780,380 indels. By integrating the markers of a previously reported genetic map, a high-density genetic map consisting of 15 linkage groups including 8,956 high-quality SNPs was constructed. The total length of the genetic map is 1,490.81 cM, which shows good collinearity with the genome. A total of 25 representative markers (potential QTLs) related to leaf area were identified, and there were genes differentially expressed in large and small leaf samples near these markers. GWAS analysis further verified the reliability of QTL mapping. Thirty-one pairs of newly developed indel markers located near these potential QTLs showed high polymorphism and had good discrimination between large and small leaf tea plant samples. Our research will provide necessary support and new insights for tea plant genetic breeding, quantitative trait mapping and yield improvement.

12.
BMC Plant Biol ; 21(1): 280, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154536

RESUMO

Alternative splicing (AS) increases the diversity of transcripts and proteins through the selection of different splice sites and plays an important role in the growth, development and stress tolerance of plants. With the release of the reference genome of the tea plant (Camellia sinensis) and the development of transcriptome sequencing, researchers have reported the existence of AS in tea plants. However, there is a lack of a platform, centered on different RNA-seq datasets, that provides comprehensive information on AS.To facilitate access to information on AS and reveal the molecular function of AS in tea plants, we established the first comprehensive AS database for tea plants (TeaAS, http://www.teaas.cn/index.php ). In this study, 3.96 Tb reads from 66 different RNA-seq datasets were collected to identify AS events. TeaAS supports four methods of retrieval of AS information based on gene ID, gene name, annotation (non-redundant/Kyoto encyclopedia of genes and genomes/gene ontology annotation or chromosomal location) and RNA-seq data. It integrates data pertaining to genome annotation, type of AS event, transcript sequence, and isoforms expression levels from 66 RNA-seq datasets. The AS events resulting from different environmental conditions and that occurring in varied tissue types, and the expression levels of specific transcripts can be clearly identified through this online database. Moreover, it also provides two useful tools, Basic Local Alignment Search Tool and Generic Genome Browser, for sequence alignment and visualization of gene structure.The features of the TeaAS database make it a comprehensive AS bioinformatics platform for researchers, as well as a reference for studying AS events in woody crops. It could also be helpful for revealing the novel biological functions of AS in gene regulation in tea plants.


Assuntos
Processamento Alternativo , Camellia sinensis/genética , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , RNA de Plantas , RNA-Seq
13.
BMC Plant Biol ; 21(1): 243, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34049485

RESUMO

BACKGROUND: Branch angle is a pivotal component of tea plant architecture. Tea plant architecture not only affects tea quality and yield but also influences the efficiency of automatic tea plant pruning. However, the molecular mechanism controlling the branch angle, which is an important aspect of plant architecture, is poorly understood in tea plants. RESULTS: In the present study, three CsLAZY genes were identified from tea plant genome data through sequence homology analysis. Phylogenetic tree displayed that the CsLAZY genes had high sequence similarity with LAZY genes from other plant species, especially those in woody plants. The expression patterns of the three CsLAZYs were surveyed in eight tissues. We further verified the expression levels of the key CsLAZY1 transcript in different tissues among eight tea cultivars and found that CsLAZY1 was highly expressed in stem. Subcellular localization analysis showed that the CsLAZY1 protein was localized in the plasma membrane. CsLAZY1 was transferred into Arabidopsis thaliana to investigate its potential role in regulating shoot development. Remarkably, the CsLAZY1 overexpressed plants responded more effectively than the wild-type plants to a gravity inversion treatment under light and dark conditions. The results indicate that CsLAZY1 plays an important role in regulating shoot gravitropism in tea plants. CONCLUSIONS: The results provide important evidence for understanding the functions of CsLAZY1 in regulating shoot gravitropism and influencing the stem branch angle in tea plants. This report identifies CsLAZY1 as a promising gene resource for the improvement of tea plant architecture.


Assuntos
Camellia sinensis/genética , Genoma de Planta/genética , Gravitropismo/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Camellia sinensis/fisiologia , Filogenia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Caules de Planta/genética , Caules de Planta/fisiologia , Chá
14.
Plant J ; 106(3): 862-875, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33595875

RESUMO

Gray blight (GB) is one of the most destructive diseases of tea plants, causing considerable damage and productivity losses; however, the dynamic roles of defense genes during pathogen infection remain largely unclear. To explore the numerous molecular interactions associated with GB stress in tea plants, we employed transcriptome, sRNAome and degradome sequencing from 1 to 13 days post-inoculation (dpi) at 3-day intervals. The transcriptomics results showed that differentially expressed genes (DEGs) related to flavonoid synthesis, such as chalcone synthase (CHS) and phenylalanine ammonia-lyase (PAL), were particularly induced at 4 dpi. Consistent with this, the contents of catechins (especially gallocatechin), which are the dominant flavonoids in tea plants, also increased in the leaves of tea plants infected with GB. Combined analysis of the sRNAome and degradome revealed that microRNAs could mediate tea plant immunity by regulating DEG expression at the post-transcriptional level. Co-expression network analysis demonstrated that miR530b-ethylene responsive factor 96 (ERF96) and miRn211-thaumatin-like protein (TLP) play crucial roles in the response to GB. Accordingly, gene-specific antisense oligonucleotide assays suggested that suppressing ERF96 decreased the levels of reactive oxygen species (ROS), whereas suppressing TLP increased the levels of ROS. Furthermore, ERF96 was induced, but TLP was suppressed, in susceptible tea cultivars. Our results collectively demonstrate that ERF96 is a negative regulator and TLP is a positive regulator in the response of tea plants to GB. Taken together, our comprehensive integrated analysis reveals a dynamic regulatory network linked to GB stress in tea plants and provides candidate genes for improvement of tea plants.


Assuntos
Camellia sinensis/genética , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma/genética , Camellia sinensis/imunologia , Camellia sinensis/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , MicroRNAs/fisiologia , Pestalotiopsis , Doenças das Plantas/imunologia , RNA de Plantas/genética , RNA de Plantas/fisiologia
15.
Breed Sci ; 71(5): 584-593, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35087322

RESUMO

The tea plant (Camellia sinensis) is an evergreen woody plant with a high economic value. Guangxi Province is adjacent to the origin center of the tea plant in southern China. It has abundant germplasm resources and is a historically important tea-producing province. However, there is little information about the genetic diversity, genetic introgression, and fingerprints of the tea germplasms from Guangxi Province. Here, we constructed a phylogenetic tree of 126 tea accessions from Guangxi Province using 20 SSR markers. This tree classified these tea accessions into three subgroups containing 19, 47, and 60 members, respectively. High genetic similarity was observed among the three subgroups, and the genetic diversity of the populations was ranked as follows: subgroup 3 > subgroup 2 > subgroup 1. Furthermore, we analyzed the genetic relationships among 168 tea accessions from Guangxi Province and neighboring provinces. The results of the population structure analysis were highly consistent with the clustering results, and genetic introgression was observed. We identified six SSRs as the core marker set, because they could sufficiently distinguish between all 126 tea accessions. The results provide a crucial theoretical basis for utilization and protection of tea germplasms from Guangxi Province, and will help improve the breeding and popularization of elite tea cultivars.

16.
Front Plant Sci ; 11: 603819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329675

RESUMO

Camellia sinensis var. sinensis (CSS) and C. sinensis var. assamica (CSA) are the two most economically important tea varieties. They have different characteristics and geographical distribution. Their genetic diversity and differentiation are unclear. Here, we identified 18,903,625 single nucleotide polymorphisms (SNPs) and 7,314,133 insertion-deletion mutations (indels) by whole-genome resequencing of 30 cultivated and three wild related species. Population structure and phylogenetic tree analyses divided the cultivated accessions into CSS and CSA containing 6,440,419 and 6,176,510 unique variations, respectively. The CSS subgroup possessed higher genetic diversity and was enriched for rare alleles. The CSA subgroup had more non-synonymous mutations and might have experienced a greater degree of balancing selection. The evolution rate (dN/dS) and KEGG enrichment indicated that genes involved in the synthesis and metabolism of flavor substances were positively selected in both CSS and CSA subpopulations. However, there are extensive genome differentiation regions (2959 bins and approximately 148 M in size) between the two subgroups. Compared with CSA (141 selected regions containing 124 genes), the CSS subgroup (830 selected regions containing 687 genes) displayed more selection regions potentially related to environmental adaptability. Fifty-three pairs of polymorphic indel markers were developed. Some markers were located in hormone-related genes with distinct alleles in the two cultivated subgroups. These identified variations and selected regions provide clues for the differentiation and adaptive evolution of tea varieties. The newly developed indel markers will be valuable in further genetic research on tea plants.

17.
Mol Plant ; 13(7): 1013-1026, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32353625

RESUMO

Tea plant is an important economic crop, which is used to produce the world's oldest and most widely consumed tea beverages. Here, we present a high-quality reference genome assembly of the tea plant (Camellia sinensis var. sinensis) consisting of 15 pseudo-chromosomes. LTR retrotransposons (LTR-RTs) account for 70.38% of the genome, and we present evidence that LTR-RTs play critical roles in genome size expansion and the transcriptional diversification of tea plant genes through preferential insertion in promoter regions and introns. Genes, particularly those coding for terpene biosynthesis proteins, associated with tea aroma and stress resistance were significantly amplified through recent tandem duplications and exist as gene clusters in tea plant genome. Phylogenetic analysis of the sequences of 81 tea plant accessions with diverse origins revealed three well-differentiated tea plant populations, supporting the proposition for the southwest origin of the Chinese cultivated tea plant and its later spread to western Asia through introduction. Domestication and modern breeding left significant signatures on hundreds of genes in the tea plant genome, particularly those associated with tea quality and stress resistance. The genomic sequences of the reported reference and resequenced tea plant accessions provide valuable resources for future functional genomics study and molecular breeding of improved cultivars of tea plants.


Assuntos
Camellia sinensis/genética , Evolução Molecular , Genoma de Planta , Cromossomos de Plantas , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Melhoramento Vegetal , Valores de Referência , Retroelementos , Sequências Repetidas Terminais
18.
J Agric Food Chem ; 68(22): 6221-6236, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32379968

RESUMO

Based on the abundance of taste compounds in leaves at different leaf positions on the same shoot, green tea made from one bud and one leaf, or even just one bud, has the best quality. To elucidate the mechanism underlying the regulation of the biosynthesis of these compounds, we profiled the metabolome, transcriptome, sRNA, degradome, and WGCNA using leaves from five leaf positions of shoots. Through this analysis, we found 139 miRNA-target pairs related to taste compound biosynthesis and 96 miRNA-target pairs involved in phytohormone synthesis or signal transduction. Moreover, miR166-HD-ZIP, miR169-NF-YA, IAA, ZA, ABA, and JA were positively related to the accumulation of gallated catechin, caffeine, and theanine. However, miR396-GRF, miR393-bHLH, miR156-SBP, and SA were negatively correlated with these compounds. Among these important pairs, the miR396-GRF and miR156-SBP pairs were further validated by using qRT-PCR, Northern blots, and cotransformation. This is the first report describing that miRNA-TF pairs and phytohormones might synergistically regulate the biosynthesis of taste compounds in the leaves of tea plants.


Assuntos
Camellia sinensis/metabolismo , Aromatizantes/metabolismo , MicroRNAs/genética , Reguladores de Crescimento de Plantas/metabolismo , Cafeína/análise , Cafeína/metabolismo , Camellia sinensis/química , Camellia sinensis/genética , Catequina/análise , Catequina/metabolismo , Aromatizantes/análise , Regulação da Expressão Gênica de Plantas , Glutamatos/análise , Glutamatos/metabolismo , MicroRNAs/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Plant Sci ; 290: 110306, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31779914

RESUMO

Flavonoids are the major class of characteristic secondary compounds in Camellia sinensis that affect quality of tea. However, the temporal variation and the underlying regulatory mechanism of flavonoid biosynthesis during different growth months require a further investigation. Here, we combined analyses of the metabolomics and transcriptomics to tea leaves freshly collected during five different months for a comprehensive understanding of flavonoid metabolism regulation in tea plants. Through loading plot analysis, significant changes in the contents of metabolites during growing months were discovered, and further co-expression and association analysis indicated that one flavone glycoside (naringenin-7-O-glucoside) and two flavonol glycosides (quercetin-3-O-galactoside and kaemferol-3-O-(6″-O-p-courmaroyl)-glucoside) were evaluated as growth markers, which may explain the high bitterness and astringency of August teas; additionally, the high levels of two flavan-3-ols (gallocatechin and catechin gallate) may contribute to the flavor formation of April tea. Meanwhile, multiple flavonoid-related structural genes, MYB and bHLH transcription factors exhibit specific expression patterns to modulate the biosynthesis of these key flavonoids. A co-expression regulatory sub-network was constructed based on profiles of differentially expressed genes; one CsbHLH and six transcription factors (three CsbHLHs and three CsMYBs) exhibited negative and positive roles in the regulation of flavonoid biosynthetic genes, respectively. Taken together, our results provide new insights into the regulation of principle flavonoids for unique flavor of tea regulated by many flavonoid-related structural genes and transcription factors during different growth months.


Assuntos
Camellia sinensis/genética , Flavonoides/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Estações do Ano , Fatores de Transcrição/metabolismo
20.
BMC Genomics ; 20(1): 935, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805860

RESUMO

BACKGROUND: Single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) are the major genetic variations and are distributed extensively across the whole plant genome. However, few studies of these variations have been conducted in the long-lived perennial tea plant. RESULTS: In this study, we investigated the genome-wide genetic variations between Camellia sinensis var. sinensis 'Shuchazao' and Camellia sinensis var. assamica 'Yunkang 10', identified 7,511,731 SNPs and 255,218 InDels based on their whole genome sequences, and we subsequently analyzed their distinct types and distribution patterns. A total of 48 InDel markers that yielded polymorphic and unambiguous fragments were developed when screening six tea cultivars. These markers were further deployed on 46 tea cultivars for transferability and genetic diversity analysis, exhibiting information with an average 4.02 of the number of alleles (Na) and 0.457 of polymorphism information content (PIC). The dendrogram showed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or original places. Interestingly, we observed that the catechin/caffeine contents between 'Shuchazao' and 'Yunkang 10' were significantly different, and a large number of SNPs/InDels were identified within catechin/caffeine biosynthesis-related genes. CONCLUSION: The identified genome-wide genetic variations and newly-developed InDel markers will provide a valuable resource for tea plant genetic and genomic studies, especially the SNPs/InDels within catechin/caffeine biosynthesis-related genes, which may serve as pivotal candidates for elucidating the molecular mechanism governing catechin/caffeine biosynthesis.


Assuntos
Camellia sinensis/genética , Marcadores Genéticos , Mutação INDEL , Sequenciamento Completo do Genoma/métodos , Vias Biossintéticas , Cafeína/análise , Camellia sinensis/química , Camellia sinensis/classificação , Camellia sinensis/crescimento & desenvolvimento , Catequina/análise , Genoma de Planta , Filogenia , Folhas de Planta/química , Folhas de Planta/classificação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA