Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 14: 197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265628

RESUMO

In the event of visual impairment or blindness, information from other intact senses can be used as substitutes to retrain (and in extremis replace) visual functions. Abilities including reading, mental representation of objects and spatial navigation can be performed using tactile information. Current technologies can convey a restricted library of stimuli, either because they depend on real objects or renderings with low resolution layouts. Digital haptic technologies can overcome such limitations. The applicability of this technology was previously demonstrated in sighted participants. Here, we reasoned that visually-impaired and blind participants can create mental representations of letters presented haptically in normal and mirror-reversed form without the use of any visual information, and mentally manipulate such representations. Visually-impaired and blind volunteers were blindfolded and trained on the haptic tablet with two letters (either L and P or F and G). During testing, they haptically explored on any trial one of the four letters presented at 0°, 90°, 180°, or 270° rotation from upright and indicated if the letter was either in a normal or mirror-reversed form. Rotation angle impacted performance; greater deviation from 0° resulted in greater impairment for trained and untrained normal letters, consistent with mental rotation of these haptically-rendered objects. Performance was also generally less accurate with mirror-reversed stimuli, which was not affected by rotation angle. Our findings demonstrate, for the first time, the suitability of a digital haptic technology in the blind and visually-impaired. Classic devices remain limited in their accessibility and in the flexibility of their applications. We show that mental representations can be generated and manipulated using digital haptic technology. This technology may thus offer an innovative solution to the mitigation of impairments in the visually-impaired, and to the training of skills dependent on mental representations and their spatial manipulation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-30930756

RESUMO

Sensory substitution is an effective means to rehabilitate many visual functions after visual impairment or blindness. Tactile information, for example, is particularly useful for functions such as reading, mental rotation, shape recognition, or exploration of space. Extant haptic technologies typically rely on real physical objects or pneumatically driven renderings and thus provide a limited library of stimuli to users. New developments in digital haptic technologies now make it possible to actively simulate an unprecedented range of tactile sensations. We provide a proof-of-concept for a new type of technology (hereafter haptic tablet) that renders haptic feedback by modulating the friction of a flat screen through ultrasonic vibrations of varying shapes to create the sensation of texture when the screen is actively explored. We reasoned that participants should be able to create mental representations of letters presented in normal and mirror-reversed haptic form without the use of any visual information and to manipulate such representations in a mental rotation task. Healthy sighted, blindfolded volunteers were trained to discriminate between two letters (either L and P, or F and G; counterbalanced across participants) on a haptic tablet. They then tactually explored all four letters in normal or mirror-reversed form at different rotations (0°, 90°, 180°, and 270°) and indicated letter form (i.e., normal or mirror-reversed) by pressing one of two mouse buttons. We observed the typical effect of rotation angle on object discrimination performance (i.e., greater deviation from 0° resulted in worse performance) for trained letters, consistent with mental rotation of these haptically-rendered objects. We likewise observed generally slower and less accurate performance with mirror-reversed compared to prototypically oriented stimuli. Our findings extend existing research in multisensory object recognition by indicating that a new technology simulating active haptic feedback can support the generation and spatial manipulation of mental representations of objects. Thus, such haptic tablets can offer a new avenue to mitigate visual impairments and train skills dependent on mental object-based representations and their spatial manipulation.

3.
Clin Exp Optom ; 98(4): 342-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25675964

RESUMO

BACKGROUND: Research groups and funding agencies need a functional assessment suitable for an ultra-low vision population to evaluate the impact of new vision-restoration treatments. The purpose of this study was to develop a pilot assessment to capture the functional visual ability and well-being of subjects whose vision has been partially restored with the Argus II Retinal Prosthesis System. METHODS: The Functional Low-Vision Observer Rated Assessment (FLORA) pilot assessment involved a self-report section, a list of functional visual tasks for observation of performance and a case narrative summary. Results were analysed to determine whether the interview questions and functional visual tasks were appropriate for this ultra-low vision population and whether the ratings suffered from floor or ceiling effects. Thirty subjects with severe to profound retinitis pigmentosa (bare light perception or worse in both eyes) were enrolled in a clinical trial and implanted with the Argus II System. From this population, 26 subjects were assessed with the FLORA. Seven different evaluators administered the assessment. RESULTS: All 14 interview questions were asked. All 35 tasks for functional vision were selected for evaluation at least once, with an average of 20 subjects being evaluated for each test item. All four rating options­impossible (33 per cent), difficult (23 per cent), moderate (24 per cent) and easy (19 per cent)­were used by the evaluators. Evaluators also judged the amount of vision they observed the subjects using to complete the various tasks, with 'vision only' occurring 75 per cent on average with the System ON, and 29 per cent with the System OFF. CONCLUSION: The first version of the FLORA was found to contain useful elements for evaluation and to avoid floor and ceiling effects. The next phase of development will be to refine the assessment and to establish reliability and validity to increase its value as an assessment tool for functional vision and well-being.


Assuntos
Visão Ocular , Próteses Visuais , Humanos , Projetos Piloto , Reprodutibilidade dos Testes , Retinose Pigmentar/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA