Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35741889

RESUMO

The hard-to-cook defect in common beans is dictated by the ability to achieve cell separation during cooking. Hydrolysis of pectin methyl-esters by the pectin methyl-esterase (PME) enzyme influences cell separation. However, the contributions of the PME enzyme and the cell wall to the hard-to-cook defect have not been studied using molecular tools. We compared relevant molecular processes in fast- and slow-cooking bean varieties to understand the mechanisms underpinning the hard-to-cook defect. A PME spectrophotometric assay showed minor differences in enzyme activity between varieties. Meanwhile, a PME HMMER search in the P. vulgaris genome unveiled 113 genes encoding PMEs and PME inhibitors (PMEIs). Through RNA sequencing, we compared the gene expression of the PME-related genes in both varieties during seed development. A PME (Phvul010g080300) and PMEI gene (Phvul005g007600) showed the highest expression in the fast- and slow-cooking beans, respectively. We further identified 2132 differentially expressed genes (DEGs). Genes encoding cell-wall-related enzymes, mainly glycosylphosphatidylinositol mannosyltransferase, xyloglucan O-acetyltransferase, pectinesterase, and callose synthase, ranked among the top DEGs, indicating novel relations to the hard-to-cook defect. Gene ontology mapping revealed hydrolase activity and protein phosphorylation as functional categories with the most abundant upregulated DEGs in the slow-cooking bean. Additionally, the cell periphery contained 8% of the DEGs upregulated in the slow-cooking bean. This study provides new insights into the role of pectin methyl-esterase-related genes and novel cell wall processes in the occurrence of the hard-to-cook defect.

2.
PLoS One ; 13(3): e0194554, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566040

RESUMO

Human pathogens can survive and grow in hot springs. For water quality assessment, Escherichia coli or Enterococci are the main thermotolerant enteric bacteria commonly used to estimate the load of pathogenic bacteria in water. However, most of the environmental bacteria are unculturable thus culture methods may cause bias in detection of most pathogens. Illumina sequencing can provide a more comprehensive and accurate insight into environmental bacterial pathogens, which can be used to develop better risk assessment methods and promote public health awareness. In this study, high-throughput Illumina sequencing was used to identify bacterial pathogens from five hot springs; Maiwooi, Akwar, Garbanabra, Elegedi and Gelti, in Eritrea. Water samples were collected from the five hot springs. Total community DNA was extracted from samples using the phenol-chloroform method. The 16S rRNA gene variable region (V4-V7) of the extracted DNA was amplified and library construction done according to Illumina sequencing protocol. The sequence reads (length >200 bp) from Illumina sequencing libraries ranged from 22,091 sequences in the wet sediment sample from Garbanabra to 155,789 sequences in the mat sample from Elegedi. Taxonomy was assigned to each OTU using BLASTn against a curated database derived from GreenGenes, RDPII, SILVA SSU Reference 119 and NCBI. The proportion of potential pathogens from the water samples was highest in Maiwooi (17.8%), followed by Gelti (16.7%), Akwar (13.6%) and Garbanabra (10.9%). Although the numbers of DNA sequence reads from Illumina sequencing were very high for the Elegedi (104,328), corresponding proportion of potential pathogens very low (3.6%). Most of the potential pathogenic bacterial sequences identified were from Proteobacteria and Firmicutes. Legionella and Clostridium were the most common detected genera with different species. Most of the potential pathogens were detected from the water samples. However, sequences belonging to Clostridium were observed more abundantly from the mat samples. This study employed high-throughput sequencing technologies to determine the presence of pathogenic bacteria in the five hot springs in Eritrea.


Assuntos
Bactérias/patogenicidade , Fontes Termais/microbiologia , Microbiologia da Água , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Eritreia , Genes de RNAr/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
3.
BMC Microbiol ; 17(1): 203, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28938870

RESUMO

BACKGROUND: Total community rDNA was used to determine the diversity of bacteria and archaea from water, wet sediment and microbial mats samples of hot springs in the Eastern lowlands of Eritrea. The temperatures of the springs range from 49.5 °C to 100 °C while pH levels varied from 6.97 to 7.54. Akwar and Maiwooi have high carbonate levels. The springs near the seashore, Garbanabra and Gelti, are more saline with higher levels of sodium and chlorides. Elegedi, situated in the Alid volcanic area, has the highest temperature, iron and sulfate concentrations. RESULTS: The five hot springs shared 901 of 4371 OTUs recovered while the three sample types (water, wet sediment and microbial mats) also shared 1429 OTUs. The Chao1 OTU estimate in water sample was significantly higher than the wet sediment and microbial mat samples. As indicated by NMDS, the community samples at genus level showed location specific clustering. Certain genera correlated with temperature, sodium, carbonate, iron, sulfate and ammonium levels in water. The abundant phyla included Proteobacteria (6.2-82.3%), Firmicutes (1.6-63.5%), Deinococcus-Thermus (0.0-19.2%), Planctomycetes (0.0-11.8%), Aquificae (0.0-9.9%), Chlorobi (0.0-22.3%) and Bacteroidetes (2.7-8.4%). CONCLUSION: There were significant differences in microbial community structure within the five locations and sample types at OTU level. The occurence of Aquificae, Deinococcus-Thermus, some Cyanobacteria and Crenarchaeota were highly dependent on temperature. The Halobacterium, unclassified Thaumarchaeota, Actinobacteria and Cyanobacteria showed significant correlation with salinity occurring abundantly in Garbanabra and Gelti. Firmicutes and unclassified Rhodocylaceae were higher in the microbial mat samples, while Archaea were prominent in the wet sediment samples.


Assuntos
Archaea/classificação , Bactérias/classificação , Fontes Termais/microbiologia , Consórcios Microbianos , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Carbonatos , DNA Arqueal/análise , DNA Bacteriano/análise , Eritreia , Sedimentos Geológicos/microbiologia , Fontes Termais/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Consórcios Microbianos/genética , Filogenia , Análise de Sequência de DNA , Água/química , Microbiologia da Água
4.
BMC Res Notes ; 6: 448, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24207020

RESUMO

BACKGROUND: Once a transgenic plant is developed, the selectable marker gene (SMG) becomes unnecessary in the plant. In fact, the continued presence of the SMG in the transgenic plant may cause unexpected pleiotropic effects as well as environmental or biosafety issues. Several methods for removal of SMGs that have been reported remain inaccessible due to protection by patents, while development of new ones is expensive and cost prohibitive. Here, we describe the development of a new vector for producing marker-free plants by simply adapting an ordinary binary vector to the double right border (DRB) vector design using conventional cloning procedures. FINDINGS: We developed the DRB vector pMarkfree5.0 by placing the bar gene (representing genes of interest) between two copies of T-DNA right border sequences. The ß-glucuronidase (gus) and nptII genes (representing the selectable marker gene) were cloned next followed by one copy of the left border sequence. When tested in a model species (tobacco), this vector system enabled the generation of 55.6% kanamycin-resistant plants by Agrobacterium-mediated transformation. The frequency of cotransformation of the nptII and bar transgenes using the vector was 66.7%. Using the leaf bleach and Basta assays, we confirmed that the nptII and bar transgenes were coexpressed and segregated independently in the transgenic plants. This enable separation of the transgenes in plants cotransformed using pMarkfree5.0. CONCLUSIONS: The results suggest that the DRB system developed here is a practical and effective approach for separation of gene(s) of interest from a SMG and production of SMG-free plants. Therefore this system could be instrumental in production of "clean" plants containing genes of agronomic importance.


Assuntos
DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Vetores Genéticos/química , Nicotiana/genética , Plantas Geneticamente Modificadas , Agrobacterium tumefaciens/genética , Bioensaio , Clonagem Molecular , Marcadores Genéticos , Glucuronidase/genética , Transformação Genética , Transgenes
5.
Int J Dev Biol ; 57(6-8): 483-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24166431

RESUMO

In higher plants, genetic transformation, which is part of the toolbox for the study of living organisms, had been reported only 30 years ago, boosting basic plant biology research, generating superior crops, and leading to the new discipline of plant biotechnology. Here, we review its principles and the corresponding molecular tools. In vitro regeneration, through somatic embryogenesis or organogenesis, is discussed because they are prerequisites for the subsequent Agrobacterium tumefaciens-mediated transferred (T)-DNA or direct DNA transfer methods to produce transgenic plants. Important molecular components of the T-DNA are examined, such as selectable marker genes that allow the selection of transformed cells in tissue cultures and are used to follow the gene of interest in the next generations, and reporter genes that have been developed to visualize promoter activities, protein localizations, and protein-protein interactions. Genes of interest are assembled with promoters and termination signals in Escherichia coli by means of GATEWAY-derived binary vectors that represent the current versatile cloning tools. Finally, future promising developments in transgene technology are considered.


Assuntos
Agrobacterium tumefaciens/genética , Biotecnologia/métodos , DNA Bacteriano/genética , Vetores Genéticos , Escherichia coli/metabolismo , Técnicas de Transferência de Genes , Genes de Plantas , Genes Reporter , Genótipo , Plantas/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Transgenes
6.
Plant Physiol ; 152(3): 1357-72, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20044451

RESUMO

To identify genes involved in vascular patterning in Arabidopsis (Arabidopsis thaliana), we screened for abnormal venation patterns in a large collection of leaf shape mutants isolated in our laboratory. The rotunda1-1 (ron1-1) mutant, initially isolated because of its rounded leaves, exhibited an open venation pattern, which resulted from an increased number of free-ending veins. We positionally cloned the RON1 gene and found it to be identical to FRY1/SAL1, which encodes an enzyme with inositol polyphosphate 1-phosphatase and 3' (2'),5'-bisphosphate nucleotidase activities and has not, to our knowledge, previously been related to venation patterning. The ron1-1 mutant and mutants affected in auxin homeostasis share perturbations in venation patterning, lateral root formation, root hair length, shoot branching, and apical dominance. These similarities prompted us to monitor the auxin response using a DR5-GUS auxin-responsive reporter transgene, the expression levels of which were increased in roots and reduced in leaves in the ron1-1 background. To gain insight into the function of RON1/FRY1/SAL1 during vascular development, we generated double mutants for genes involved in vein patterning and found that ron1 synergistically interacts with auxin resistant1 and hemivenata-1 but not with cotyledon vascular pattern1 (cvp1) and cvp2. These results suggest a role for inositol metabolism in the regulation of auxin responses. Microarray analysis of gene expression revealed that several hundred genes are misexpressed in ron1-1, which may explain the pleiotropic phenotype of this mutant. Metabolomic profiling of the ron1-1 mutant revealed changes in the levels of 38 metabolites, including myoinositol and indole-3-acetonitrile, a precursor of auxin.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Monoéster Fosfórico Hidrolases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Clonagem Molecular , DNA de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Homeostase , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Inositol/metabolismo , Morfogênese , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Monoéster Fosfórico Hidrolases/genética
7.
Plant Cell ; 19(2): 417-32, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17329565

RESUMO

Chromatin modification and transcriptional activation are novel roles for E3 ubiquitin ligase proteins that have been mainly associated with ubiquitin-dependent proteolysis. We identified HISTONE MONOUBIQUITINATION1 (HUB1) (and its homolog HUB2) in Arabidopsis thaliana as RING E3 ligase proteins with a function in organ growth. We show that HUB1 is a functional homolog of the human and yeast BRE1 proteins because it monoubiquitinated histone H2B in an in vitro assay. Hub knockdown mutants had pale leaf coloration, modified leaf shape, reduced rosette biomass, and inhibited primary root growth. One of the alleles had been designated previously as ang4-1. Kinematic analysis of leaf and root growth together with flow cytometry revealed defects in cell cycle activities. The hub1-1 (ang4-1) mutation increased cell cycle duration in young leaves and caused an early entry into the endocycles. Transcript profiling of shoot apical tissues of hub1-1 (ang4-1) indicated that key regulators of the G2-to-M transition were misexpressed. Based on the mutant characterization, we postulate that HUB1 mediates gene activation and cell cycle regulation probably through chromatin modifications.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclo Celular/fisiologia , Ligases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferação de Células , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Humanos , Ligases/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ativação Transcricional , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA