Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mini Rev Med Chem ; 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36471584

RESUMO

Phosphatidyl-inositol-3-kinase (PI3K) has emerged as a potential therapeutic target for the development of novel anticancer drugs. The dysregulation of PI3K has been associated with many human malignancies such as breast, colon, endometrial, brain, and prostate cancers. The PI3K kinases in their different isoforms namely α, ß, δ, and γ, encode PIK3CA, PIK3CB, PIK3CD, and PIK3CG genes. Specific gene mutation or overexpression of the protein is responsible for therapeutic failure of current therapeutics. Recently, various PI3K signaling pathway inhibitors have been identified which showed promising therapeutic results by acting on specific isoforms of the kinase too. Several inhibitors containing medicinally privileged scaffolds like oxadiazole, pyrrolotriazine, quinazoline, quinazolinone, quinazoline-chalcone hybrids, quinazoline-sulfonamide, pyrazolochalcone, quinolone hydroxamic acid, benzofuropyridinone, imidazopyridine, benzoxazines, dibenzoxanthene, indoloderivatives, benzimidazole, and benzothiazine derivatives have been developed to target PI3K pathway and/or a specific isoform. The PI3K inhibitors which are under clinical trial studies include GDC-0032, INK1117 for PI3K-α, and AZD8186 for PI3K-ß. This review primarily focuses on the structural insights and structure anticancer activity relationship studies of recent PI3K inhibitors including their clinical stages of development and therapeutic values.

2.
Mini Rev Med Chem ; 22(16): 2146-2165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35114920

RESUMO

Phosphatidyl-inositol-3-kinase (PI3K) has emerged as a potential therapeutic target for the development of novel anticancer drugs. The dysregulation of PI3K has been associated with many human malignancies such as breast, colon, endometrial, brain, and prostate cancers. The PI3K kinases in their different isoforms, namely α, ß, δ, and γ, encode PIK3CA, PIK3CB, PIK3CD, and PIK3CG genes. Specific gene mutation or overexpression of the protein is responsible for the therapeutic failure of current therapeutics. Recently, various PI3K signaling pathway inhibitors have been identified, which showed promising therapeutic results by acting on specific isoforms of the kinase too. Several inhibitors containing medicinally privileged scaffolds like oxadiazole, pyrrolotriazine, quinazoline, quinazolinone, quinazoline-chalcone hybrids, quinazoline-sulfonamide, pyrazolochalcone, quinolone hydroxamic acid, benzofuropyridinone, imidazopyridine, benzoxazines, dibenzoxanthene, indoloderivatives, benzimidazole, and benzothiazine derivatives have been developed to target the PI3K pathway and/or a specific isoform. The PI3K inhibitors under clinical trial studies include GDC-0032, INK1117 for PI3K-α, and AZD8186 for PI3K-ß. This review primarily focuses on the structural insights, anticancer activities, and structure-activity relationship (SARs) studies of recent PI3K inhibitors, including their clinical stages of development and therapeutic values.


Assuntos
Antineoplásicos , Inibidores de Fosfoinositídeo-3 Quinase , Antineoplásicos/farmacologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Isoformas de Proteínas/metabolismo , Quinazolinas , Relação Estrutura-Atividade
3.
Anticancer Agents Med Chem ; 22(6): 1037-1055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34288843

RESUMO

mTOR (mammalian target of rapamycin) is a catalytic subunit composed of two multi-protein complexes that indicate mTORC1 and mTORC2. It plays a crucial role in various fundamental cell processes like cell proliferation, metabolism, survival, cell growth, etc. Various first line mTOR inhibitors such as Rapamycin, Temsirolimus, Everolimus, Ridaforolimus, Umirolimus, and Zotarolimus have been used popularly. In contrast, several mTOR inhibitors such as Gedatolisib (PF-05212384) are under phase 2 clinical trials studies for the treatment of triple-negative breast cancer. The mTOR inhibitors bearing heterocyclic moieties such as quinazoline, thiophene, morpholine, imidazole, pyrazine, furan, quinoline are under investigation against various cancer cell lines (U87MG, PC-3, MCF-7, A549, MDA-231). In this review, we summarized updated research related to mTOR inhibitors and their structure-activity relationship, which may help scientists develop potent inhibitors against cancer.


Assuntos
Inibidores de MTOR , Proteínas Proto-Oncogênicas c-akt , Proliferação de Células , Everolimo/farmacologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR
4.
Eur J Med Chem ; 225: 113781, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34438126

RESUMO

Pyrazolopyrimidine scaffold is one of the privileged heterocycles in drug discovery. This scaffold produced numerous biological activities in which anticancer is important one. Previous studies showed its importance in interactions with various receptors such as growth factor receptor, TGFBR2 gene, CDK2/cyclin E and Abl kinase, adenosine receptor, calcium-dependent Protein Kinase, Pim-1 kinase, Potent Janus kinase 2, BTK kinase, P21-activated kinase 1, extracellular signal-regulated kinase 2, histone lysine demethylase and Human Kinesin-5. However, there is a need of numerous studies for the discovery of target based potential compounds. The structure activity relationship studies may help to explore the generation of potential compounds in short time period. Therefore, in the present review we tried to explore the structural aspects of Pyrazolopyrimidine with their structure activity relationship against various targets for the development of potential compounds. The current review is the compilation of significant advances made on Pyrazolopyrimidines reported between 2015 and 2020.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Humanos , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Pirazóis/química , Pirimidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA