Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38903092

RESUMO

Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation non-uniformly to secure against the possibility that favorable growth conditions, which puts sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early utilize a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay non-sporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.

2.
mSystems ; 9(6): e0084723, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809013

RESUMO

Bacterial phage shock protein (PSP) systems stabilize the bacterial cell membrane and protect against envelope stress. These systems have been associated with virulence, but despite their critical roles, PSP components are not well characterized outside proteobacteria. Using comparative genomics and protein sequence-structure-function analyses, we systematically identified and analyzed PSP homologs, phyletic patterns, domain architectures, and gene neighborhoods. This approach underscored the evolutionary significance of the system, revealing that its core protein PspA (Snf7 in ESCRT outside bacteria) was present in the last universal common ancestor and that this ancestral functionality has since diversified into multiple novel, distinct PSP systems across life. Several novel partners of the PSP system were identified: (i) the Toastrack domain, likely facilitating assembly of sub-membrane stress-sensing and signaling complexes, (ii) the newly defined HTH-associated α-helical signaling domain-PadR-like transcriptional regulator pair system, and (iii) multiple independent associations with ATPase, CesT/Tir-like chaperone, and Band-7 domains in proteins thought to mediate sub-membrane dynamics. Our work also uncovered links between the PSP components and other domains, such as novel variants of SHOCT-like domains, suggesting roles in assembling membrane-associated complexes of proteins with disparate biochemical functions. Results are available at our interactive web app, https://jravilab.org/psp.IMPORTANCEPhage shock proteins (PSP) are virulence-associated, cell membrane stress-protective systems. They have mostly been characterized in Proteobacteria and Firmicutes. We now show that a minimal PSP system was present in the last universal common ancestor that evolved and diversified into newly identified functional contexts. Recognizing the conservation and evolution of PSP systems across bacterial phyla contributes to our understanding of stress response mechanisms in prokaryotes. Moreover, the newly discovered PSP modularity will likely prompt new studies of lineage-specific cell envelope structures, lifestyles, and adaptation mechanisms. Finally, our results validate the use of domain architecture and genetic context for discovery in comparative genomics.


Assuntos
Proteínas de Bactérias , Evolução Molecular , Proteínas de Choque Térmico , Estresse Fisiológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/química , Estresse Fisiológico/genética , Filogenia , Domínios Proteicos , Membrana Celular/metabolismo
3.
Sci Adv ; 10(22): eadn2789, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809974

RESUMO

Cell motility universally relies on spatial regulation of focal adhesion complexes (FAs) connecting the substrate to cellular motors. In bacterial FAs, the Adventurous gliding motility machinery (Agl-Glt) assembles at the leading cell pole following a Mutual gliding-motility protein (MglA)-guanosine 5'-triphosphate (GTP) gradient along the cell axis. Here, we show that GltJ, a machinery membrane protein, contains cytosolic motifs binding MglA-GTP and AglZ and recruiting the MreB cytoskeleton to initiate movement toward the lagging cell pole. In addition, MglA-GTP binding triggers a conformational shift in an adjacent GltJ zinc-finger domain, facilitating MglB recruitment near the lagging pole. This prompts GTP hydrolysis by MglA, leading to complex disassembly. The GltJ switch thus serves as a sensor for the MglA-GTP gradient, controlling FA activity spatially.


Assuntos
Proteínas de Bactérias , Adesões Focais , Guanosina Trifosfato , Adesões Focais/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Guanosina Trifosfato/metabolismo , Ligação Proteica
4.
Mol Microbiol ; 121(1): 152-166, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104967

RESUMO

Small proteins (<50 amino acids) are emerging as ubiquitous and important regulators in organisms ranging from bacteria to humans, where they commonly bind to and regulate larger proteins during stress responses. However, fundamental aspects of small proteins, such as their molecular mechanism of action, downregulation after they are no longer needed, and their evolutionary provenance, are poorly understood. Here, we show that the MntS small protein involved in manganese (Mn) homeostasis binds and inhibits the MntP Mn transporter. Mn is crucial for bacterial survival in stressful environments but is toxic in excess. Thus, Mn transport is tightly controlled at multiple levels to maintain optimal Mn levels. The small protein MntS adds a new level of regulation for Mn transporters, beyond the known transcriptional and post-transcriptional control. We also found that MntS binds to itself in the presence of Mn, providing a possible mechanism of downregulating MntS activity to terminate its inhibition of MntP Mn export. MntS is homologous to the signal peptide of SitA, the periplasmic metal-binding subunit of a Mn importer. Remarkably, the homologous signal peptide regions can substitute for MntS, demonstrating a functional relationship between MntS and these signal peptides. Conserved gene neighborhoods support that MntS evolved from the signal peptide of an ancestral SitA protein, acquiring a life of its own with a distinct function in Mn homeostasis.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Manganês/metabolismo , Sinais Direcionadores de Proteínas , Homeostase , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Bactérias/metabolismo
5.
bioRxiv ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37986874

RESUMO

Bacillus subtilis spores are produced inside the cytosol of a mother cell. Spore surface assembly requires the SpoVK protein in the mother cell, but its function is unknown. Here, we report that SpoVK is a dedicated chaperone from a distinct higher-order clade of AAA+ ATPases that activates the peptidoglycan glycosyltransferase MurG during sporulation, even though MurG does not normally require activation by a chaperone during vegetative growth. MurG redeploys to the spore surface during sporulation, where we show that the local pH is reduced and propose that this change in cytosolic nanoenvironment necessitates a specific chaperone for proper MurG function. Further, we show that SpoVK participates in a developmental checkpoint in which improper spore surface assembly inactivates SpoVK, which leads to sporulation arrest. The AAA+ ATPase clade containing SpoVK includes other dedicated chaperones involved in secretion, cell-envelope biosynthesis, and carbohydrate metabolism, suggesting that such fine-tuning might be a widespread feature of different subcellular nanoenvironments.

6.
bioRxiv ; 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37886572

RESUMO

The spherical bacterium Staphylococcus aureus, a leading cause of nosocomial infections, undergoes binary fission by dividing in two alternating orthogonal planes, but the mechanism by which S. aureus correctly selects the next cell division plane is not known. To identify cell division placement factors, we performed a chemical genetic screen that revealed a gene which we termed pcdA. We show that PcdA is a member of the McrB family of AAA+ NTPases that has undergone structural changes and a concomitant functional shift from a restriction enzyme subunit to an early cell division protein. PcdA directly interacts with the tubulin-like central divisome component FtsZ and localizes to future cell division sites before membrane invagination initiates. This parallels the action of another McrB family protein, CTTNBP2, which stabilizes microtubules in animals. We show that PcdA also interacts with the structural protein DivIVA and propose that the DivIVA/PcdA complex recruits unpolymerized FtsZ to assemble along the proper cell division plane. Deletion of pcdA conferred abnormal, non-orthogonal division plane selection, increased sensitivity to cell wall-targeting antibiotics, and reduced virulence in a murine infection model. Targeting PcdA could therefore highlight a treatment strategy for combatting antibiotic-resistant strains of S. aureus.

7.
bioRxiv ; 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37398132

RESUMO

Small proteins (< 50 amino acids) are emerging as ubiquitous and important regulators in organisms ranging from bacteria to humans, where they commonly bind to and regulate larger proteins during stress responses. However, fundamental aspects of small proteins, such as their molecular mechanism of action, downregulation after they are no longer needed, and their evolutionary provenance are poorly understood. Here we show that the MntS small protein involved in manganese (Mn) homeostasis binds and inhibits the MntP Mn transporter. Mn is crucial for bacterial survival in stressful environments, but is toxic in excess. Thus, Mn transport is tightly controlled at multiple levels to maintain optimal Mn levels. The small protein MntS adds a new level of regulation for Mn transporters, beyond the known transcriptional and post-transcriptional control. We also found that MntS binds to itself in the presence of Mn, providing a possible mechanism of downregulating MntS activity to terminate its inhibition of MntP Mn export. MntS is homologous to the signal peptide of SitA, the periplasmic metal-binding subunit of a Mn importer. Remarkably, the homologous signal peptide regions can substitute for MntS, demonstrating a functional relationship between MntS and these signal peptides. Conserved gene-neighborhoods support that MntS evolved from an ancestral SitA, acquiring a life of its own with a distinct function in Mn homeostasis. Significance: This study demonstrates that the MntS small protein binds and inhibits the MntP Mn exporter, adding another layer to the complex regulation of Mn homeostasis. MntS also interacts with itself in cells with Mn, which could prevent it from regulating MntP. We propose that MntS and other small proteins might sense environmental signals and shut off their own regulation via binding to ligands (e.g., metals) or other proteins. We also provide evidence that MntS evolved from the signal peptide region of the Mn importer, SitA. Homologous SitA signal peptides can recapitulate MntS activities, showing that they have a second function beyond protein secretion. Overall, we establish that small proteins can emerge and develop novel functionalities from gene remnants.

8.
Viruses ; 14(9)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36146784

RESUMO

NAD+ and ADP-ribose (ADPr)-containing molecules are at the interface of virus-host conflicts across life encompassing RNA processing, restriction, lysogeny/dormancy and functional hijacking. We objectively defined the central components of the NAD+-ADPr networks involved in these conflicts and systematically surveyed 21,191 completely sequenced viral proteomes representative of all publicly available branches of the viral world to reconstruct a comprehensive picture of the viral NAD+-ADPr systems. These systems have been widely and repeatedly exploited by positive-strand RNA and DNA viruses, especially those with larger genomes and more intricate life-history strategies. We present evidence that ADP-ribosyltransferases (ARTs), ADPr-targeting Macro, NADAR and Nudix proteins are frequently packaged into virions, particularly in phages with contractile tails (Myoviruses), and deployed during infection to modify host macromolecules and counter NAD+-derived signals involved in viral restriction. Genes encoding NAD+-ADPr-utilizing domains were repeatedly exchanged between distantly related viruses, hosts and endo-parasites/symbionts, suggesting selection for them across the virus world. Contextual analysis indicates that the bacteriophage versions of ADPr-targeting domains are more likely to counter soluble ADPr derivatives, while the eukaryotic RNA viral versions might prefer macromolecular ADPr adducts. Finally, we also use comparative genomics to predict host systems involved in countering viral ADP ribosylation of host molecules.


Assuntos
Adenosina Difosfato Ribose , Vírus , Adenosina Difosfato Ribose/metabolismo , NAD/metabolismo , Proteoma , RNA , Vírus/metabolismo
9.
Dev Cell ; 57(3): 344-360.e6, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35065768

RESUMO

Bacillus subtilis spores are encased in two concentric shells: an outer proteinaceous "coat" and an inner peptidoglycan "cortex," separated by a membrane. Cortex assembly depends on coat assembly initiation, but how cells achieve this coordination across the membrane is unclear. Here, we report that the protein SpoVID monitors the polymerization state of the coat basement layer via an extension to a functional intracellular LysM domain that arrests sporulation when coat assembly is initiated improperly. Whereas extracellular LysM domains bind mature peptidoglycan, SpoVID LysM binds to the membrane-bound lipid II peptidoglycan precursor. We propose that improper coat assembly exposes the SpoVID LysM domain, which then sequesters lipid II and prevents cortex assembly. SpoVID defines a widespread group of firmicute proteins with a characteristic N-terminal domain and C-terminal peptidoglycan-binding domains that might combine coat and cortex assembly roles to mediate a developmental checkpoint linking the morphogenesis of two spatially separated supramolecular structures.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Membrana Celular/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/fisiologia , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/ultraestrutura , Modelos Biológicos , Mutação/genética , Peptidoglicano/metabolismo , Polimerização , Domínios Proteicos , Esporos Bacterianos/metabolismo , Esporos Bacterianos/ultraestrutura
10.
Elife ; 102021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33704064

RESUMO

Hydrolysis of nucleoside triphosphates releases similar amounts of energy. However, ATP hydrolysis is typically used for energy-intensive reactions, whereas GTP hydrolysis typically functions as a switch. SpoIVA is a bacterial cytoskeletal protein that hydrolyzes ATP to polymerize irreversibly during Bacillus subtilis sporulation. SpoIVA evolved from a TRAFAC class of P-loop GTPases, but the evolutionary pressure that drove this change in nucleotide specificity is unclear. We therefore reengineered the nucleotide-binding pocket of SpoIVA to mimic its ancestral GTPase activity. SpoIVAGTPase functioned properly as a GTPase but failed to polymerize because it did not form an NDP-bound intermediate that we report is required for polymerization. Further, incubation of SpoIVAGTPase with limiting ATP did not promote efficient polymerization. This approach revealed that the nucleotide base, in addition to the energy released from hydrolysis, can be critical in specific biological functions. We also present data suggesting that increased levels of ATP relative to GTP at the end of sporulation was the evolutionary pressure that drove the change in nucleotide preference in SpoIVA.


Living organisms need energy to stay alive; in cells, this energy is supplied in the form of a small molecule called adenosine triphosphate, or ATP, a nucleotide that stores energy in the bonds between its three phosphate groups. ATP is present in all living cells and is often referred to as the energy currency of the cell, because it can be easily stored and transported to where it is needed. However, it is unknown why cells rely so heavily on ATP when a highly similar nucleotide called guanosine triphosphate, or GTP, could also act as an energy currency. There are several examples of proteins that originally used GTP and have since evolved to use ATP, but it is not clear why this switch occurred. One suggestion is that ATP is the more readily available nucleotide in the cell. To test this hypothesis, Updegrove, Harke et al. studied a protein that helps bacteria transition into spores, which are hardier and can survive in extreme environments until conditions become favorable for bacteria to grow again. In modern bacteria, this protein uses ATP to provide energy, but it evolved from an ancestral protein that used GTP instead. First, Updegrove, Harke et al. engineered the protein so that it became more similar to the ancestral protein and used GTP instead of ATP. When this was done, the protein gained the ability to break down GTP and release energy from it, but it no longer performed its enzymatic function. This suggests that both the energy released and the source of that energy are important for a protein's activity. Further analysis showed that the modern version of the protein has evolved to briefly hold on to ATP after releasing its energy, which did not happen with GTP in the modified protein. Updegrove, Harke et al. also discovered that the levels of GTP in a bacterial cell fall as it transforms into a spore, while ATP levels remain relatively high. This suggests that ATP may indeed have become the source of energy of choice because it was more available. These findings provide insights into how ATP became the energy currency in cells, and suggest that how ATP is bound by proteins can impact a protein's activity. Additionally, these experiments could help inform the development of drugs targeting proteins that bind nucleotides: it may be essential to consider the entirety of the binding event, and not just the release of energy.


Assuntos
Adenosina Trifosfatases/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , GTP Fosfo-Hidrolases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Domínio Catalítico , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Polimerização , Engenharia de Proteínas
11.
Viruses ; 13(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466489

RESUMO

Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic overview of their manifold adaptations across major biological systems. By means of clustering and principal component analysis of the phyletic patterns of conserved genes, all known jumbo phages can be classified into three higher-order groups, which include both myoviral and siphoviral morphologies indicating multiple independent origins from smaller predecessors. Our study uncovers several under-appreciated or unreported aspects of the DNA replication, recombination, transcription and virion maturation systems. Leveraging sensitive sequence analysis methods, we identify novel protein-modifying enzymes that might help hijack the host-machinery. Focusing on host-virus conflicts, we detect strategies used to counter different wings of the bacterial immune system, such as cyclic nucleotide- and NAD+-dependent effector-activation, and prevention of superinfection during pseudolysogeny. We reconstruct the RNA-repair systems of jumbo phages that counter the consequences of RNA-targeting host effectors. These findings also suggest that several jumbo phage proteins provide a snapshot of the systems found in ancient replicons preceding the last universal ancestor of cellular life.


Assuntos
Bacteriófagos/genética , Bacteriófagos/fisiologia , Genoma Viral , Bacteriófagos/ultraestrutura , Sistemas CRISPR-Cas , Genômica , Interações entre Hospedeiro e Microrganismos , Filogenia , Análise de Componente Principal
12.
Sci Rep ; 10(1): 9598, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533024

RESUMO

Babesia microti is an intraerythrocytic parasite and the primary causative agent of human babesiosis. It is transmitted by Ixodes ticks, transfusion of blood and blood products, organ donation, and perinatally. Despite its global public health impact, limited progress has been made to identify and characterize immunodominant B. microti antigens for diagnostic and vaccine use. Using genome-wide immunoscreening, we identified 56 B. microti antigens, including some previously uncharacterized antigens. Thirty of the most immunodominant B. microti antigens were expressed as recombinant proteins in E. coli. Among these, the combined use of two novel antigens and one previously described antigen provided 96% sensitivity and 100% specificity in identifying B. microti antibody containing sera in an ELISA. Using extensive computational sequence and bioinformatics analyses and cellular localization studies, we have clarified the domain architectures, potential biological functions, and evolutionary relationships of the most immunodominant B. microti antigens. Notably, we found that the BMN-family antigens are not monophyletic as currently annotated, but rather can be categorized into two evolutionary unrelated groups of BMN proteins respectively defined by two structurally distinct classes of extracellular domains. Our studies have enhanced the repertoire of immunodominant B. microti antigens, and assigned potential biological function to these antigens, which can be evaluated to develop novel assays and candidate vaccines.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Babesia microti/imunologia , Babesiose/imunologia , Biologia Computacional/métodos , Epitopos Imunodominantes/imunologia , Proteínas Recombinantes/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/genética , Babesia microti/genética , Babesiose/parasitologia , Estudos de Casos e Controles , Variação Genética , Genoma , Humanos , Epitopos Imunodominantes/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Biblioteca de Peptídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência
13.
PLoS One ; 13(7): e0201043, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30044851

RESUMO

Macrophages express a wide array of invariant receptors that facilitate host defense and mediate pathogenesis during pathogen invasion. We report on a novel population of CD11bhighCD14+F4/80+ macrophages that express TCRß. This population expands dramatically during a Plasmodium berghei ANKA infection and sequesters in the brain during experimental cerebral malaria. Importantly, measurement of TCRß transcript and protein levels in macrophages in wildtype versus nude and Rag1 knockout mice establishes that the observed expression is not a consequence of passive receptor expression due to phagocytosis or trogocytosis of peripheral T cells or nonspecific antibody staining to an Fc receptor or cross reactive epitope. We also demonstrate that TCRß on brain sequestered macrophages undergoes productive gene rearrangements and shows preferential Vß usage. Remarkably, there is a significant correlation in the proportion of macrophages that express TCRß and peripheral parasitemia. In addition, presence of TCRß on the macrophage also correlates with a significant increase (1.9 fold) in the phagocytosis of parasitized erythrocytes. By transcriptional profiling, we identify a novel set of genes and pathways that associate with TCRß expression by the macrophage. Expansion of TCRß-expressing macrophages points towards a convergence of the innate and adaptive immune responses where both arms of the immune system cooperate to modulate the host response to malaria and possibly other infections.


Assuntos
Regulação da Expressão Gênica , Macrófagos/metabolismo , Macrófagos/parasitologia , Malária Cerebral/genética , Malária Cerebral/imunologia , Fagocitose , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Animais , Encéfalo/imunologia , Encéfalo/parasitologia , Eritrócitos/parasitologia , Feminino , Rearranjo Gênico , Leucócitos/metabolismo , Macrófagos/imunologia , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
14.
Antonie Van Leeuwenhoek ; 111(5): 753-760, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29488183

RESUMO

The phage shock protein (Psp) stress-response system protects bacteria from envelope stress through a cascade of interactions with other proteins and membrane lipids to stabilize the cell membrane. A key component of this multi-gene system is PspA, an effector protein that is found in diverse bacterial phyla, archaea, cyanobacteria, and chloroplasts. Other members of the Psp system include the cognate partners of PspA that are part of known operons: pspF||pspABC in Proteobacteria, liaIHGFSR in Firmicutes, and clgRpspAMN in Actinobacteria. Despite the functional significance of the Psp system, the conservation of PspA and other Psp functions, as well as the various genomic contexts of PspA, remain poorly characterized in Actinobacteria. Here we utilize a computational evolutionary approach to systematically identify the variations of the Psp system in ~450 completed actinobacterial genomes. We first determined the homologs of PspA and its cognate partners (as reported in Escherichia coli, Bacillus subtilis, and Mycobacterium tuberculosis) across Actinobacteria. This survey revealed that PspA and most of its functional partners are prevalent in Actinobacteria. We then found that PspA occurs in four predominant genomic contexts within Actinobacteria, the primary context being the clgRpspAM system previously identified in Mycobacteria. We also constructed a phylogenetic tree of PspA homologs (including paralogs) to trace the conservation and evolution of PspA across Actinobacteria. The genomic context revealed that PspA shows changes in its gene-neighborhood. The presence of multiple PspA contexts or of other known Psp members in genomic neighborhoods that do not carry pspA suggests yet undiscovered functional implications in envelope stress response mechanisms.


Assuntos
Actinobacteria/genética , Proteínas de Bactérias/genética , Evolução Molecular , Proteínas de Choque Térmico/genética , Actinobacteria/classificação , Bases de Dados Genéticas , Variação Genética , Genoma Bacteriano , Proteínas de Membrana/genética , Modelos Genéticos , Filogenia
15.
J Biol Chem ; 293(15): 5715-5730, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440394

RESUMO

Manganese (Mn) is an essential trace nutrient for organisms because of its role in cofactoring enzymes and providing protection against reactive oxygen species (ROS). Many bacteria require manganese to form pathogenic or symbiotic interactions with eukaryotic host cells. However, excess manganese is toxic, requiring cells to have manganese export mechanisms. Bacteria are currently known to possess two widely distributed classes of manganese export proteins, MntP and MntE, but other types of transporters likely exist. Moreover, the structure and function of MntP is not well understood. Here, we characterized the role of three structurally related proteins known or predicted to be involved in manganese transport in bacteria from the MntP, UPF0016, and TerC families. These studies used computational analysis to analyze phylogeny and structure, physiological assays to test sensitivity to high levels of manganese and ROS, and inductively coupled plasma-mass spectrometry (ICP-MS) to measure metal levels. We found that MntP alters cellular resistance to ROS. Moreover, we used extensive computational analyses and phenotypic assays to identify amino acids required for MntP activity. These negatively charged residues likely serve to directly bind manganese and transport it from the cytoplasm through the membrane. We further characterized two other potential manganese transporters associated with a Mn-sensing riboswitch and found that the UPF0016 family of proteins has manganese export activity. We provide here the first phenotypic and biochemical evidence for the role of Alx, a member of the TerC family, in manganese homeostasis. It does not appear to export manganese, but rather it intriguingly facilitates an increase in intracellular manganese concentration. These findings expand the available knowledge about the identity and mechanisms of manganese homeostasis proteins across bacteria and show that proximity to a Mn-responsive riboswitch can be used to identify new components of the manganese homeostasis machinery.


Assuntos
Proteínas de Transporte , Proteínas de Escherichia coli , Escherichia coli , Manganês , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transporte de Íons/fisiologia , Manganês/química , Manganês/metabolismo , Relação Estrutura-Atividade
16.
PLoS One ; 11(12): e0166814, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27911910

RESUMO

Experimental immunization with radiation attenuated sporozoites (RAS) and genetically attenuated sporozoites has proved to be a promising approach for malaria vaccine development. However, parasite biomarkers of growth attenuation and enhanced immune protection in response to radiation remain poorly understood. Here, we report on the effect of an attenuating dose of γ-irradiation (15 krad) on the Plasmodium falciparum sporozoite (PfSPZ) ultrastructure by electron microscopy, growth rate of liver stage P. falciparum in liver cell cultures, and genome-wide transcriptional profile of liver stage parasites by microarray. We find that γ-irradiation treated PfSPZ retained a normal cellular structure except that they were vacuous with a partially disrupted plasma membrane and inner membrane complex. A similar infection rate was observed by γ-irradiation-treated and untreated PfSPZ in human HCO-4 liver cells (0.47% versus 0.49%, respectively) on day 3 post-infection. In the microarray studies, cumulatively, 180 liver stage parasite genes were significantly transcriptionally altered on day 3 and/or 6 post-infection. Among the transcriptionally altered biomarkers, we identified a signature of seven candidate parasite genes that associated with functionally diverse pathways that may regulate radiation induced cell cycle arrest of the parasite within the hepatocyte. A repertoire of 14 genes associated with protein translation is transcriptionally overexpressed within the parasite by radiation. Additionally, 37 genes encode proteins expressed on the cell surface or exported into the host cell, 4 encode membrane associated transporters, and 10 encode proteins related to misfolding and stress-related protein processing. These results have significantly increased the repertoire of novel targets for 1) biomarkers of safety to define proper attenuation, 2) generating genetically attenuated parasite vaccine candidates, and 3) subunit candidate vaccines against liver stage malaria.


Assuntos
Raios gama , Regulação da Expressão Gênica/efeitos da radiação , Fígado/metabolismo , Vacinas Antimaláricas/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Animais , Anopheles , Biomarcadores/metabolismo , Linhagem Celular , Feminino , Humanos , Fígado/parasitologia , Malária Falciparum/metabolismo , Malária Falciparum/prevenção & controle , Vacinas Atenuadas/metabolismo
17.
Nature ; 539(7630): 530-535, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27749817

RESUMO

Various rod-shaped bacteria mysteriously glide on surfaces in the absence of appendages such as flagella or pili. In the deltaproteobacterium Myxococcus xanthus, a putative gliding motility machinery (the Agl-Glt complex) localizes to so-called focal adhesion sites (FASs) that form stationary contact points with the underlying surface. Here we show that the Agl-Glt machinery contains an inner-membrane motor complex that moves intracellularly along a right-handed helical path; when the machinery becomes stationary at FASs, the motor complex powers a left-handed rotation of the cell around its long axis. At FASs, force transmission requires cyclic interactions between the molecular motor and the adhesion proteins of the outer membrane via a periplasmic interaction platform, which presumably involves contractile activity of motor components and possible interactions with peptidoglycan. Our results provide a molecular model of bacterial gliding motility.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Adesões Focais/metabolismo , Myxococcus xanthus/fisiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Movimento Celular , Proteínas Motores Moleculares/metabolismo , Myxococcus xanthus/citologia , Periplasma/metabolismo , Rotação
18.
Infect Immun ; 83(10): 3890-901, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26195550

RESUMO

The intraerythrocytic apicomplexan Babesia microti, the primary causative agent of human babesiosis, is a major public health concern in the United States and elsewhere. Apicomplexans utilize a multiprotein complex that includes a type I membrane protein called apical membrane antigen 1 (AMA1) to invade host cells. We have isolated the full-length B. microti AMA1 (BmAMA1) gene and determined its nucleotide sequence, as well as the amino acid sequence of the AMA1 protein. This protein contains an N-terminal signal sequence, an extracellular region, a transmembrane region, and a short conserved cytoplasmic tail. It shows the same domain organization as the AMA1 orthologs from piroplasm, coccidian, and haemosporidian apicomplexans but differs from all other currently known piroplasmida, including other Babesia and Theileria species, in lacking two conserved cysteines in highly variable domain III of the extracellular region. Minimal polymorphism was detected in BmAMA1 gene sequences of parasite isolates from six babesiosis patients from Nantucket. Immunofluorescence microscopy studies showed that BmAMA1 is localized on the cell surface and cytoplasm near the apical end of the parasite. Native BmAMA1 from parasite lysate and refolded recombinant BmAMA1 (rBmAMA1) expressed in Escherichia coli reacted with a mouse anti-BmAMA1 antibody using Western blotting. In vitro binding studies showed that both native BmAMA1 and rBmAMA1 bind to human red blood cells (RBCs). This binding is trypsin and chymotrypsin treatment sensitive but neuraminidase independent. Incubation of B. microti parasites in human RBCs with a mouse anti-BmAMA1 antibody inhibited parasite growth by 80% in a 24-h assay. Based on its antigenically conserved nature and potential role in RBC invasion, BmAMA1 should be evaluated as a vaccine candidate.


Assuntos
Antígenos de Protozoários/isolamento & purificação , Antígenos de Protozoários/metabolismo , Babesia microti/metabolismo , Babesiose/parasitologia , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Babesia microti/química , Babesia microti/genética , Babesiose/imunologia , Feminino , Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência
19.
Mol Cell ; 57(6): 1099-1109, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25794618

RESUMO

The highly structured, cis-encoded RNA elements known as riboswitches modify gene expression upon binding a wide range of molecules. The yybP-ykoY motif was one of the most broadly distributed and numerous bacterial riboswitches for which the cognate ligand was unknown. Using a combination of in vivo reporter and in vitro expression assays, equilibrium dialysis, and northern analysis, we show that the yybP-ykoY motif responds directly to manganese ions in both Escherichia coli and Bacillus subtilis. The identification of the yybP-ykoY motif as a manganese ion sensor suggests that the genes that are preceded by this motif and encode a diverse set of poorly characterized membrane proteins have roles in metal homeostasis.


Assuntos
Bacillus subtilis/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Manganês/metabolismo , Proteínas de Membrana Transportadoras/genética , Sequências Reguladoras de Ácido Ribonucleico , Riboswitch/genética , Regiões 5' não Traduzidas , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Manganês/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Bacteriano/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
20.
FEMS Microbiol Lett ; 358(2): 145-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24810258

RESUMO

Spores of Bacillus subtilis are dormant cell types that are formed when the bacterium encounters starvation conditions. Spores are encased in a shell, termed the coat, which is composed of approximately seventy different proteins and protects the spore's genetic material from environmental insults. The structural component of the basement layer of the coat is an exceptional cytoskeletal protein, termed SpoIVA, which binds and hydrolyzes ATP. ATP hydrolysis is utilized to drive a conformational change in SpoIVA that leads to its irreversible self-assembly into a static polymer in vitro. Here, we characterize the middle domain of SpoIVA, the predicted secondary structure of which resembles the chemotaxis protein CheX but, unlike CheX, does not harbor residues required for phosphatase activity. Disruptions in this domain did not abolish ATP hydrolysis, but resulted in mislocalization of the protein and reduction in sporulation efficiency in vivo. In vitro, disruptions in this domain prevented the ATP hydrolysis-driven conformational change in SpoIVA required for polymerization and led to the aggregation of SpoIVA into particles that did not form filaments. We propose a model in which SpoIVA initially assumes a conformation in which it inhibits its own aggregation into particles, and that ATP hydrolysis remodels the protein so that it assumes a polymerization-competent conformation.


Assuntos
Bacillus subtilis/química , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Multimerização Proteica , Esporos Bacterianos/química , Esporos Bacterianos/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Análise Mutacional de DNA , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Esporos Bacterianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA