RESUMO
One of the significant challenges in organic cultivation of edible mushrooms is the control of invasive Trichoderma species that can hinder the mushroom production and lead to economic losses. Here, we present a novel loop-mediated isothermal amplification (LAMP) assay coupled with gold nanoparticles (AuNPs) for rapid colorimetric detection of Trichoderma spp. The specificity of LAMP primers designed on the tef1 gene was validated in silico and through gel-electrophoresis on Trichoderma harzianum and non-target soil-borne fungal and bacterial strains. LAMP amplification of genomic DNA templates was performed at 65 °C for only 30 min. The results were rapidly visualized in a microplate format within less than 5 min. The assay is based on salt-induced aggregation of AuNPs that is being prevented by the amplicons produced in case of positive LAMP reaction. As the solution color changes from red to violet upon nanoparticle aggregation can be observed with the naked eye, the developed LAMP-AuNPs assay can be easily operated to provide a simple initial screening for the rapid detection of Trichoderma in button mushroom cultivation substrate.
Assuntos
Agaricus , Colorimetria , Ouro , Nanopartículas Metálicas , Técnicas de Amplificação de Ácido Nucleico , Trichoderma , Ouro/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Nanopartículas Metálicas/química , Colorimetria/métodos , Trichoderma/genética , Trichoderma/isolamento & purificação , Agaricus/genética , DNA Fúngico/genética , Técnicas de Diagnóstico Molecular/métodosRESUMO
Agaricus bisporus, commonly known as the button mushroom, has attracted attention for its biological properties, including antimicrobial activities. Here, we evaluated the efficacy of ethanolic and acetonic extracts from white and brown A. bisporus against different bacterial strains, including antibiotic-resistant strains. Bioautography and principal component analysis identified the most active antibacterial compounds for each of the tested bacteria and indicated the main markers responsible for the strain-specific effects. In addition, the mushroom extracts demonstrated a synergistic impact when combined with the antistaphylococcal antibiotic AFN-1252.
RESUMO
Antibiotics inhibiting the fatty acid synthesis pathway (FASII) of the major pathogen Staphylococcus aureus reach their enzyme targets, but bacteria continue growth by using environmental fatty acids (eFAs) to produce phospholipids. We assessed the consequences and effectors of FASII-antibiotic (anti-FASII) adaptation. Anti-FASII induced lasting expression changes without genomic rearrangements. Several identified regulators affected the timing of adaptation outgrowth. Adaptation resulted in decreased expression of major virulence factors. Conversely, stress responses were globally increased and adapted bacteria were more resistant to peroxide killing. Importantly, pre-exposure to peroxide led to faster anti-FASII-adaptation by stimulating eFA incorporation. This adaptation differs from reports of peroxide-stimulated antibiotic efflux, which leads to tolerance. In vivo, anti-FASII-adapted S. aureus killed the insect host more slowly but continued multiplying. We conclude that staphylococcal adaptation to FASII antibiotics involves reprogramming, which decreases virulence and increases stress resistance. Peroxide, produced by the host to combat infection, favors anti-FASII adaptation.
RESUMO
Fatty acid biosynthesis (FASII) enzymes are considered valid targets for antimicrobial drug development against the human pathogen Staphylococcus aureus However, incorporation of host fatty acids confers FASII antibiotic adaptation that compromises prospective treatments. S. aureus adapts to FASII inhibitors by first entering a nonreplicative latency period, followed by outgrowth. Here, we used transcriptional fusions and direct metabolite measurements to investigate the factors that dictate the duration of latency prior to outgrowth. We show that stringent response induction leads to repression of FASII and phospholipid synthesis genes. (p)ppGpp induction inhibits synthesis of malonyl-CoA, a molecule that derepresses FapR, a key regulator of FASII and phospholipid synthesis. Anti-FASII treatment also triggers transient expression of (p)ppGpp-regulated genes during the anti-FASII latency phase, with concomitant repression of FapR regulon expression. These effects are reversed upon outgrowth. GTP depletion, a known consequence of the stringent response, also occurs during FASII latency, and is proposed as the common signal linking these responses. We next showed that anti-FASII treatment shifts malonyl-CoA distribution between its interactants FapR and FabD, toward FapR, increasing expression of the phospholipid synthesis genes plsX and plsC during outgrowth. We conclude that components of the stringent response dictate malonyl-CoA availability in S. aureus FASII regulation, and contribute to latency prior to anti-FASII-adapted outgrowth. A combinatory approach, coupling a (p)ppGpp inducer and an anti-FASII, blocks S. aureus outgrowth, opening perspectives for bi-therapy treatment.IMPORTANCEStaphylococcus aureus is a major human bacterial pathogen for which new inhibitors are urgently needed. Antibiotic development has centered on the fatty acid synthesis (FASII) pathway, which provides the building blocks for bacterial membrane phospholipids. However, S. aureus overcomes FASII inhibition and adapts to anti-FASII by using exogenous fatty acids that are abundant in host environments. This adaptation mechanism comprises a transient latency period followed by bacterial outgrowth. Here, we use metabolite sensors and promoter reporters to show that responses to stringent conditions and to FASII inhibition intersect, in that both involve GTP and malonyl-CoA. These two signaling molecules contribute to modulating the duration of latency prior to S. aureus adaptation outgrowth. We exploit these novel findings to propose a bi-therapy treatment against staphylococcal infections.
Assuntos
Antibacterianos/farmacologia , Ácidos Graxos/antagonistas & inibidores , Guanosina Pentafosfato/fisiologia , Guanosina Trifosfato/fisiologia , Malonil Coenzima A/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Ácidos Graxos/biossíntese , Humanos , Malonil Coenzima A/análise , Mupirocina/farmacologia , Fosfolipídeos/biossíntese , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/fisiologiaRESUMO
The Bacillus subtilis MntR and Zur transcriptional regulators control homeostasis of manganese and zinc, two essential elements required in various cellular processes. In this work, we describe the global impact of mntR and zur deletions at the protein level. Using a comprehensive proteomic approach, we showed that 33 and 55 proteins are differentially abundant in ΔmntR and Δzur cells, respectively, including proteins involved in metal acquisition, translation, central metabolism, and cell wall homeostasis. In addition, both mutants showed modifications in intracellular metal ion pools, with significant Mg2+ accumulation in the ΔmntR mutant. Phenotypic and morphological analyses of ΔmntR and Δzur mutants revealed their high sensitivity to lysozyme, beta-lactam antibiotics, and external oxidative stress. Mutant strains had a modified cell wall thickness and accumulated lower levels of intracellular reactive oxygen species (ROS) than the wild-type strain. Remarkably, our results highlight an intimate connection between MntR, Zur, antibiotic sensitivity, and cell wall structure.IMPORTANCE Manganese and zinc are essential transition metals involved in many fundamental cellular processes, including protection against external oxidative stress. In Bacillus subtilis, Zur and MntR are key transcriptional regulators of zinc and manganese homeostasis, respectively. In this work, proteome analysis of B. subtilis wild-type, ΔmntR, and Δzur strains provided new insights into bacterial adaptation to deregulation of essential metal ions. Deletions of mntR and zur genes increased bacterial sensitivity to lysozyme, beta-lactam antibiotics, and external oxidative stress and impacted the cell wall thickness. Overall, these findings highlight that Zur and MntR regulatory networks are connected to antibiotic sensitivity and cell wall plasticity.
Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Oxirredução , Proteínas Repressoras/genética , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Interação Gene-Ambiente , Homeostase , Metais/metabolismo , Mutação , Proteômica , Proteínas Repressoras/metabolismo , Estresse FisiológicoRESUMO
The essentiality of fatty acid synthesis (FASII) products in the human pathogen Staphylococcus aureus is the underlying rationale for FASII-targeted antimicrobial drug design. Reports of anti-FASII efficacy in animals support this choice. However, restricted test conditions used previously led us to investigate this postulate in a broader, host-relevant context. We report that S. aureus rapidly adapts to FASII antibiotics without FASII mutations when exposed to host environments. FASII antibiotic administration upon signs of infection, rather than just after inoculation as commonly practiced, fails to eliminate S. aureus in a septicemia model. In vitro, serum lowers S. aureus membrane stress, leading to a greater retention of the substrates required for environmental fatty acid (eFA) utilization: eFAs and the acyl carrier protein. In this condition, eFA occupies both phospholipid positions, regardless of anti-FASII selection. Our results identify S. aureus membrane plasticity in host environments as a main limitation for using FASII antibiotics in monotherapeutic treatments.
Assuntos
Adaptação Fisiológica , Antibacterianos/farmacologia , Ácidos Graxos/metabolismo , Interações Hospedeiro-Patógeno , Sepse/patologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Farmacorresistência Bacteriana , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Sepse/tratamento farmacológico , Sepse/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologiaRESUMO
Antimicrobials targeting the fatty acid synthesis (FASII) pathway are being developed as alternative treatments for bacterial infections. Emergence of resistance to FASII inhibitors was mainly considered as a consequence of mutations in the FASII target genes. However, an alternative and efficient anti-FASII resistance strategy, called here FASII bypass, was uncovered. Bacteria that bypass FASII incorporate exogenous fatty acids in membrane lipids, and thus dispense with the need for FASII. This strategy is used by numerous Gram-positive low GC % bacteria, including streptococci, enterococci, and staphylococci. Some bacteria repress FASII genes once fatty acids are available, and "constitutively" shift to FASII bypass. Others, such as the major pathogen Staphylococcus aureus, can undergo high frequency mutations that favor FASII bypass. This capacity is particularly relevant during infection, as the host supplies the fatty acids needed for bacteria to bypass FASII and thus become resistant to FASII inhibitors. Screenings for anti-FASII resistance in the presence of exogenous fatty acids confirmed that FASII bypass confers anti-FASII resistance among clinical and veterinary isolates. Polymorphisms in S. aureus FASII initiation enzymes favor FASII bypass, possibly by increasing availability of acyl-carrier protein, a required intermediate. Here we review FASII bypass and consequences in light of proposed uses of anti-FASII to treat infections, with a focus on FASII bypass in S. aureus.
Assuntos
Antibacterianos/farmacologia , Ácidos Graxos/metabolismo , Lipídeos de Membrana/metabolismo , Staphylococcus aureus/metabolismo , Ácidos Graxos/genética , Lipídeos de Membrana/genética , Staphylococcus aureus/genéticaRESUMO
The bacterial pathway for fatty acid biosynthesis, FASII, is a target for development of new anti-staphylococcal drugs. This strategy is based on previous reports indicating that self-synthesized fatty acids appear to be indispensable for Staphylococcus aureus growth and virulence, although other bacteria can use exogenous fatty acids to compensate FASII inhibition. Here we report that staphylococci can become resistant to the FASII-targeted inhibitor triclosan via high frequency mutations in fabD, one of the FASII genes. The fabD mutants can be conditional for FASII and not require exogenous fatty acids for normal growth, and can use diverse fatty acid combinations (including host fatty acids) when FASII is blocked. These mutants show cross-resistance to inhibitors of other FASII enzymes and are infectious in mice. Clinical isolates bearing fabD polymorphisms also bypass FASII inhibition. We propose that fatty acid-rich environments within the host, in the presence of FASII inhibitors, might favour the emergence of staphylococcal strains displaying resistance to multiple FASII inhibitors.
Assuntos
Farmacorresistência Bacteriana , Ácidos Graxos/metabolismo , Mutação , Staphylococcus aureus/metabolismo , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Alelos , Animais , Antibacterianos/farmacologia , Clonagem Molecular , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/metabolismo , Feminino , Teste de Complementação Genética , Lipogênese , Camundongos , Camundongos Endogâmicos BALB C , Polimorfismo Genético , Análise de Sequência de DNA , Triclosan/farmacologia , Virulência/efeitos dos fármacosRESUMO
Crohn's disease, an incurable chronic inflammatory bowel disease, has been attributed to both genetic predisposition and environmental factors. A dysbiosis of the gut microbiota, observed in numerous patients but also in at least one hundred unaffected first-degree relatives, was proposed to have a causal role. Gut microbiota ß-D-glucuronidases (EC 3.2.1.33) hydrolyse ß-D-glucuronate from glucuronidated compounds. They include a GUS group, that is homologous to the Escherichia coli GusA, and a BG group, that is homologous to metagenomically identified H11G11 BG and has unidentified natural substrates. H11G11 BG is part of the functional core of the human gut microbiota whereas GusA, known to regenerate various toxic products, is variably found in human subjects. We investigated potential risk markers for Crohn's disease using DNA-sequence-based exploration of the ß-D-glucuronidase loci (GUS or Firmicute H11G11-BG and the respective co-encoded glucuronide transporters). Crohn's disease-related microbiomes revealed a higher frequency of a C7D2 glucuronide transporter (12/13) compared to unrelated healthy subjects (8/32). This transporter was in synteny with the potential harmful GUS ß-D-glucuronidase as only observed in a Eubacterium eligens plasmid. A conserved NH2-terminal sequence in the transporter (FGDFGND motif) was found in 83% of the disease-related subjects and only in 12% of controls. We propose a microbiota-pathology hypothesis in which the presence of this unique ß-glucuronidase locus may contribute to an increase risk for Crohn's disease.
Assuntos
Proteínas de Bactérias/genética , Doença de Crohn/microbiologia , Disbiose/microbiologia , Microbioma Gastrointestinal/genética , Glucuronidase/genética , Proteínas de Membrana Transportadoras/genética , Filogenia , Adulto , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Estudos de Casos e Controles , Doença de Crohn/complicações , Doença de Crohn/patologia , Disbiose/complicações , Disbiose/patologia , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/metabolismo , Eubacterium/classificação , Eubacterium/genética , Eubacterium/metabolismo , Família , Feminino , Firmicutes/classificação , Firmicutes/genética , Firmicutes/metabolismo , Loci Gênicos , Ácido Glucurônico/metabolismo , Glucuronidase/química , Glucuronidase/metabolismo , Glucuronídeos/metabolismo , Humanos , Masculino , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Plasmídeos/química , Plasmídeos/metabolismo , Fatores de Risco , Alinhamento de SequênciaRESUMO
Within the lactic acid bacterium genus Carnobacterium, Carnobacterium maltaromaticum is one of the most frequently isolated species from natural environments and food. It potentially plays a major role in food product biopreservation. We report here on the 3.649-Mb chromosome sequence of C. maltaromaticum LMA 28, which was isolated from ripened soft cheese.
RESUMO
In silico analysis of the genome sequence of the meat-borne lactic acid bacterium (LAB) Lactobacillus sakei 23K has revealed a repertoire of potential functions related to the adaptation of this bacterium to the meat environment. Among these functions, the ability to use N-acetyl-neuraminic acid (NANA) as a carbon source could provide a competitive advantage for growth on meat in which this amino sugar is present. In this work, we proposed to analyze the functionality of a gene cluster encompassing nanTEAR and nanK (nanTEAR-nanK). We established that this cluster encoded a pathway allowing transport and early steps of the catabolism of NANA in this genome. We also demonstrated that this cluster was absent from the genome of other L. sakei strains that were shown to be unable to grow on NANA. Moreover, L. sakei 23K nanA, nanT, nanK, and nanE genes were able to complement Escherichia coli mutants. Construction of different mutants in L. sakei 23K ΔnanR, ΔnanT, and ΔnanK and the double mutant L. sakei 23K Δ(nanA-nanE) made it possible to show that all were impaired for growth on NANA. In addition, two genes located downstream from nanK, lsa1644 and lsa1645, are involved in the catabolism of sialic acid in L. sakei 23K, as a L. sakei 23K Δlsa1645 mutant was no longer able to grow on NANA. All these results demonstrate that the gene cluster nanTEAR-nanK-lsa1644-lsa1645 is indeed involved in the use of NANA as an energy source by L. sakei.
Assuntos
Proteínas de Bactérias/metabolismo , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Teste de Complementação Genética , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Carne/microbiologia , Redes e Vias Metabólicas/genética , Família MultigênicaRESUMO
Bacterial beta-glucuronidase activity in the gut increases the enterohepatic circulation of toxic compounds and plays a major role in the etiology of colon cancer. Previously, we had found that the gus gene, which codes for beta-glucuronidase in a dominant anaerobic species of the gut microbiota, Ruminococcus gnavus strain E1, is transcribed as part of an operon that includes three ORFs that code for beta-glucoside permeases of the phosphotransferase systems. This genetic organization had never been described. We have now compared beta-glucuronidase activity and the genetic environment of the gus gene in 14 strains of Ruminococcus gnavus. We found that five out of the seven glucuronidase-positive R. gnavus strains possessed another glucuronidase gene different from the gusA operon of R. gnavus E1. This dominant commensal intestinal species appears to have a high degree of genetic diversity in the genes that control beta-glucuronidase activity.
Assuntos
Humanos , Animais , Variação Genética , Glucuronidase , Intestinos/microbiologia , Ruminococcus/genética , DNA Bacteriano/análise , Genoma Bacteriano , Reação em Cadeia da PolimeraseRESUMO
beta-Glucuronidase activity (encoded by the gus gene) has been characterized for the first time from Ruminococcus gnavus E1, an anaerobic bacterium belonging to the dominant human gut microbiota. beta-Glucuronidase activity plays a major role in the generation of toxic and carcinogenic metabolites in the large intestine, as well as in the absorption and enterohepatic circulation of many aglycone residues with protective effects, such as lignans, flavonoids, ceramide and glycyrrhetinic acid, that are liberated by the hydrolysis of the corresponding glucuronides. The complete nucleotide sequence of a 4537 bp DNA fragment containing the beta-glucuronidase locus from R. gnavus E1 was determined. Five ORFs were detected on this fragment: three complete ORFs (ORF2, gus and ORF3) and two partial ORFs (ORF4 and ORF5). The products of ORF2 and ORF3 show strong similarities with many beta-glucoside permeases of the phosphoenolpyruvate : beta-glucoside phosphotransferase systems (PTSs), such as Escherichia coli BglC, Bacillus subtilis BglP and Bacillus halodurans PTS Enzyme II. The product of ORF5 presents strong similarities with the amino-terminal domain of Clostridium acetobutylicum beta-glucosidase (bglA). The gus gene product presents similarities with several known beta-glucuronidase enzymes, including those of Lactobacillus gasseri (69%), E. coli (61%), Clostridium perfringens (59%) and Staphylococcus aureus (58%). By complementing an E. coli strain in which the uidA gene encoding the enzyme was deleted, it was confirmed that the R. gnavus gus gene encodes the beta-glucuronidase enzyme. Moreover, it was found that the gus gene was transcribed as part of an operon that includes ORF2, ORF3 and ORF5.