RESUMO
The One Health approach, recognizing the interconnectedness of human, animal, and environmental health, has gained significance amid emerging zoonotic diseases and antibiotic resistance concerns. This paper aims to demonstrate the utility of a collaborative tool, the SIEGA, for monitoring infectious diseases across domains, fostering a comprehensive understanding of disease dynamics and risk factors, highlighting the pivotal role of One Health surveillance systems. Raw whole-genome sequencing is processed through different species-specific open software that additionally reports the presence of genes associated to anti-microbial resistances and virulence. The SIEGA application is a Laboratory Information Management System, that allows customizing reports, detect transmission chains, and promptly alert on alarming genetic similarities. The SIEGA initiative has successfully accumulated a comprehensive collection of more than 1900 bacterial genomes, including Salmonella enterica, Listeria monocytogenes, Campylobacter jejuni, Escherichia coli, Yersinia enterocolitica and Legionella pneumophila, showcasing its potential in monitoring pathogen transmission, resistance patterns, and virulence factors. SIEGA enables customizable reports and prompt detection of transmission chains, highlighting its contribution to enhancing vigilance and response capabilities. Here we show the potential of genomics in One Health surveillance when supported by an appropriate bioinformatic tool. By facilitating precise disease control strategies and antimicrobial resistance management, SIEGA enhances global health security and reduces the burden of infectious diseases. The integration of health data from humans, animals, and the environment, coupled with advanced genomics, underscores the importance of a holistic One Health approach in mitigating health threats.
Assuntos
Genômica , Saúde Única , Humanos , Genômica/métodos , Animais , Genoma Bacteriano , Sequenciamento Completo do Genoma/métodos , Fatores de Virulência/genética , Farmacorresistência Bacteriana/genéticaRESUMO
Genome duplication occurs through the coordinated action of DNA replication and nucleosome assembly at replication forks. Defective nucleosome assembly causes DNA lesions by fork breakage that need to be repaired. In addition, it causes a loss of chromatin integrity. These chromatin alterations can be restored, even though the mechanisms are unknown. Here, we show that the process of chromatin restoration can deal with highly severe chromatin defects induced by the absence of the chaperones CAF1 and Rtt106 or a strong reduction in the pool of available histones, and that this process can be followed by analyzing the topoisomer distribution of the 2µ plasmid. Using this assay, we demonstrate that chromatin restoration is slow and independent of checkpoint activation, whereas it requires the action of transcription and the FACT complex. Therefore, cells are able to "repair" not only DNA lesions but also chromatin alterations associated with defective nucleosome assembly.
Assuntos
Replicação do DNA , Nucleossomos , Nucleossomos/genética , Montagem e Desmontagem da Cromatina , Cromatina/genética , DNARESUMO
Dietary fatty acids play a role in the pathogenesis of obesity-associated non-alcoholic fatty liver disease (NAFLD), which is associated with insulin resistance (IR). Fatty acid composition is critical for IR and subsequent NAFLD development. Extra-virgin olive oil (EVOO) is the main source of monounsaturated fatty acids (MUFA) in Mediterranean diets. This study examined whether EVOO-containing high fat diets may prevent diet-induced NAFLD using Ldlr-/-. Leiden mice. In female Ldlr-/-.Leiden mice, the effects of the following high fat diets (HFDs) were examined: a lard-based HFD (HFD-L); an EVOO-based HFD (HFD-EVOO); a phenolic compounds-rich EVOO HFD (HFD-OL). We studied changes in body weight (BW), lipid profile, transaminases, glucose homeostasis, liver pathology and transcriptome. Both EVOO diets reduced body weight (BW) and improved insulin sensitivity. The EVOOs did not improve transaminase values and increased LDL-cholesterol and liver collagen content. EVOOs and HFD-L groups had comparable liver steatosis. The profibrotic effects were substantiated by an up-regulation of gene transcripts related to glutathione metabolism, chemokine signaling and NF-kappa-B activation and down-regulation of genes relevant for fatty acid metabolism. Collectivelly, EVOO intake improved weight gain and insulin sensitivity but not liver inflammation and fibrosis, which was supported by changes in hepatic genes expression.
Assuntos
Peso Corporal/efeitos dos fármacos , Resistência à Insulina , Obesidade/dietoterapia , Azeite de Oliva/farmacologia , Receptores de LDL/genética , Animais , Dieta Hiperlipídica , Dieta Mediterrânea , Feminino , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismoRESUMO
Skeletal muscle plays a relevant role in metabolic flexibility and fuel usage and the associated muscle metabolic inflexibility due to high-fat diets contributing to obesity and type 2 diabetes. Previous research from our group indicates that a high-fat and rapid-digesting carbohydrate diet during pregnancy promotes an excessive adipogenesis and also increases the risk of non-alcoholic fatty liver disease in the offspring. This effect can be counteracted by diets containing carbohydrates with similar glycemic load but lower digestion rates. To address the role of the skeletal muscle in these experimental settings, pregnant rats were fed high-fat diets containing carbohydrates with similar glycemic load but different digestion rates, a high fat containing rapid-digesting carbohydrates diet (HF/RD diet) or a high fat containing slow-digesting carbohydrates diet (HF/SD diet). After weaning, male offspring were fed a standard diet for 3 weeks (weaning) or 10 weeks (adolescence) and the impact of the maternal HF/RD and HF/SD diets on the metabolism, signaling pathways and muscle transcriptome was analyzed. The HF/SD offspring displayed better muscle features compared with the HF/RD group, showing a higher muscle mass, myosin content and differentiation markers that translated into a greater grip strength. In the HF/SD group, metabolic changes such as a higher expression of fatty acids (FAT/CD36) and glucose (GLUT4) transporters, an enhanced glycogen content, as well as changes in regulatory enzymes such as muscle pyruvate kinase and pyruvate dehydrogenase kinase 4 were found, supporting an increased muscle metabolic flexibility and improved muscle performance. The analysis of signaling pathways was consistent with a better insulin sensitivity in the muscle of the HF/SD group. Furthermore, increased expression of genes involved in pathways leading to muscle differentiation, muscle mass regulation, extracellular matrix content and insulin sensitivity were detected in the HF/SD group when compared with HF/RD animals. In the HF/SD group, the upregulation of the ElaV1/HuR gene could be one of the main regulators in the positive effects of the diet in early programming on the offspring. The long-lasting programming effects of the HF/SD diet during pregnancy may depend on a coordinated gene regulation, modulation of signaling pathways and metabolic flexibility that lead to an improved muscle functionality. The dietary early programming associated to HF/SD diet has synergic and positive crosstalk effects in several tissues, mainly muscle, liver and adipose tissue, contributing to maintain the whole body homeostasis in the offspring.
Assuntos
Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/farmacologia , Fenômenos Fisiológicos da Nutrição Materna , Músculo Esquelético/metabolismo , Maleabilidade , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/métodos , Digestão , Feminino , Perfilação da Expressão Gênica , Carga Glicêmica , Fígado/metabolismo , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Transdução de SinaisRESUMO
THO/TREX is a conserved complex with a role in messenger ribonucleoprotein biogenesis that links gene expression and genome instability. Here, we show that human THO interacts with MFAP1 (microfibrillar-associated protein 1), a spliceosome-associated factor. Interestingly, MFAP1 depletion impairs cell proliferation and genome integrity, increasing γH2AX foci and DNA breaks. This phenotype is not dependent on either transcription or RNA-DNA hybrids. Mutations in the yeast orthologous gene SPP381 cause similar transcription-independent genome instability, supporting a conserved role. MFAP1 depletion has a wide effect on splicing and gene expression in human cells, determined by transcriptome analyses. MFAP1 depletion affects a number of DNA damage response (DDR) genes, which supports an indirect role of MFAP1 on genome integrity. Our work defines a functional interaction between THO and RNA processing and argues that splicing factors may contribute to genome integrity indirectly by regulating the expression of DDR genes rather than by a direct role.
Assuntos
Proteínas Contráteis/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Instabilidade Genômica , Estruturas R-Loop , Fatores de Processamento de RNA/metabolismo , Processamento Alternativo , Ciclo Celular , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismoRESUMO
BACKGROUND: A complex interplay between chromatin and topological machineries is critical for genome architecture and function. However, little is known about these reciprocal interactions, even for cohesin, despite its multiple roles in DNA metabolism. RESULTS: We have used genome-wide analyses to address how cohesins and chromatin structure impact each other in yeast. Cohesin inactivation in scc1-73 mutants during the S and G2 phases causes specific changes in chromatin structure that preferentially take place at promoters; these changes include a significant increase in the occupancy of the - 1 and + 1 nucleosomes. In addition, cohesins play a major role in transcription regulation that is associated with specific promoter chromatin architecture. In scc1-73 cells, downregulated genes are enriched in promoters with short or no nucleosome-free region (NFR) and a fragile "nucleosome - 1/RSC complex" particle. These results, together with a preferential increase in the occupancy of nucleosome - 1 of these genes, suggest that cohesins promote transcription activation by helping RSC to form the NFR. In sharp contrast, the scc1-73 upregulated genes are enriched in promoters with an "open" chromatin structure and are mostly at cohesin-enriched regions, suggesting that a local accumulation of cohesins might help to inhibit transcription. On the other hand, a dramatic loss of chromatin integrity by histone depletion during DNA replication has a moderate effect on the accumulation and distribution of cohesin peaks along the genome. CONCLUSIONS: Our analyses of the interplay between chromatin integrity and cohesin activity suggest that cohesins play a major role in transcription regulation, which is associated with specific chromatin architecture and cohesin-mediated nucleosome alterations of the regulated promoters. In contrast, chromatin integrity plays only a minor role in the binding and distribution of cohesins.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/química , Montagem e Desmontagem da Cromatina , Replicação do DNA , Regulação para Baixo , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Ativação Transcricional , Regulação para Cima , CoesinasRESUMO
CbrAB is a high ranked global regulatory system exclusive of the Pseudomonads that responds to carbon limiting conditions. It has become necessary to define the particular regulon of CbrB and discriminate it from the downstream cascades through other regulatory components. We have performed in vivo binding analysis of CbrB in P. putida and determined that it directly controls the expression of at least 61 genes; 20% involved in regulatory functions, including the previously identified CrcZ and CrcY small regulatory RNAs. The remaining are porines or transporters (20%), metabolic enzymes (16%), activities related to protein translation (5%) and orfs of uncharacterised function (38%). Amongst the later, we have selected the operon PP2810-13 to make an exhaustive analysis of the CbrB binding sequences, together with those of crcZ and crcY. We describe the implication of three independent non-palindromic subsites with a variable spacing in three different targets; CrcZ, CrcY and operon PP2810-13 in the CbrAB activation. CbrB is a quite peculiar σN-dependent activator since it is barely dependent on phosphorylation for transcriptional activation. With the depiction of the precise contacts of CbrB with the DNA, the analysis of the multimerisation status and its dependence on other factors such as RpoN o IHF, we propose a model of transcriptional activation.
Assuntos
Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , Mineração de Dados , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Mutagênese Sítio-Dirigida , Ligação Proteica , RNA Bacteriano/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Fatores de Transcrição/genética , Ativação Transcricional/fisiologiaRESUMO
Among the collection of chromatin modifications that influence its function and structure, the substitution of canonical histones by the so-called histone variants is one of the most prominent actions. Since crucial meiotic transactions are modulated by chromatin, here we investigate the functional contribution of the H2A.Z histone variant during both unperturbed meiosis and upon challenging conditions where the meiotic recombination checkpoint is triggered in budding yeast by the absence of the synaptonemal complex component Zip1 We have found that H2A.Z localizes to meiotic chromosomes in an SWR1-dependent manner. Although meiotic recombination is not substantially altered, the htz1 mutant (lacking H2A.Z) shows inefficient meiotic progression, impaired sporulation, and reduced spore viability. These phenotypes are likely accounted for by the misregulation of meiotic gene expression landscape observed in htz1 In the zip1 mutant, the absence of H2A.Z results in a tighter meiotic arrest imposed by the meiotic recombination checkpoint. We have found that Mec1-dependent Hop1-T318 phosphorylation and the ensuing Mek1 activation are not significantly altered in zip1 htz1; however, downstream checkpoint targets, such as the meiosis I-promoting factors Ndt80, Cdc5, and Clb1, are drastically downregulated. The study of the checkpoint response in zip1 htz1 has also allowed us to reveal the existence of an additional function of the Swe1 kinase, independent of CDK inhibitory phosphorylation, which is relevant to restrain meiotic cell cycle progression. In summary, our study shows that the H2A.Z histone variant impacts various aspects of meiotic development adding further insight into the relevance of chromatin dynamics for accurate gametogenesis.
Assuntos
Cromossomos Fúngicos/metabolismo , Histonas/metabolismo , Meiose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genéticaRESUMO
Human circulating Ag-induced plasma cells (PCs) contain a high proportion of cycling cells. This study reveals that these PCs spontaneously proliferate in culture during 72 h, as determined by BrdU-uptake detection. Transcriptome analysis indicates that, in comparison with tonsil and bone marrow (BM) PCs, these PCs distinctively upregulate genes involved in cell division. Blood PC proliferation occurs simultaneously with increasing apoptosis rates, and is associated with PC survival. In addition, the proliferating activity of these PCs is enhanced by the addition of cytokines present in PC survival niches. Moreover, blood Ag-induced, but not BM, PCs exhibit the expression of molecules involved in the interaction between memory B cells and T follicular helper (Tfh) cells. In fact, purified circulating and tonsil Tfh cells increased IgG secretion by blood Ag-induced, but not by BM, PCs. This effect is exerted by augmenting blood PC survival through a mechanism partly dependent on cell contact. These results strongly suggest that the proliferating capacity of circulating Ag-induced PCs contributes to their competitive migration to survival niches, either to long-living PC niches or to temporal niches present in reactive lymphoid organs and inflamed tissues, structures where Tfh cells appear to participate.
Assuntos
Comunicação Celular , Microambiente Celular , Citocinas/metabolismo , Plasmócitos/imunologia , Plasmócitos/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Antígenos/imunologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Análise por Conglomerados , Citocinas/farmacologia , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Ativação Linfocitária , Tonsila Palatina/imunologia , Tonsila Palatina/metabolismo , Fenótipo , Plasmócitos/efeitos dos fármacosRESUMO
R loops are transcription byproducts that constitute a threat to genome integrity. Here we show that R loops are tightly linked to histone H3 S10 phosphorylation (H3S10P), a mark of chromatin condensation. Chromatin immunoprecipitation (ChIP)-on-chip (ChIP-chip) analyses reveal H3S10P accumulation at centromeres, pericentromeric chromatin, and a large number of active open reading frames (ORFs) in R-loop-accumulating yeast cells, better observed in G1. Histone H3S10 plays a key role in maintaining genome stability, as scored by ectopic recombination and plasmid loss, Rad52 foci, and Rad53 checkpoint activation. H3S10P coincides with the presence of DNA-RNA hybrids, is suppressed by ribonuclease H overexpression, and causes reduced accessibility of restriction endonucleases, implying a tight connection between R loops, H3S10P, and chromatin compaction. Such histone modifications were also observed in R-loop-accumulating Caenorhabditis elegans and HeLa cells. We therefore provide a role of RNA in chromatin structure essential to understand how R loops modulate genome dynamics.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , DNA de Cadeia Simples/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Caenorhabditis elegans/genética , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Instabilidade Genômica , Células HeLa , Humanos , Meiose , Mitose , Fases de Leitura Aberta , Fosforilação , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Transcrição GênicaRESUMO
The SWR1 complex replaces the canonical histone H2A with the variant H2A.Z (Htz1 in yeast) at specific chromatin regions. This dynamic alteration in nucleosome structure provides a molecular mechanism to regulate transcription, gene silencing, chromosome segregation and DNA repair. Here we show that genetic instability, sensitivity to drugs impairing different cellular processes and genome-wide transcriptional misregulation in htz1Delta can be partially or totally suppressed if SWR1 is not formed (swr1Delta), if it forms but cannot bind to chromatin (swc2Delta) or if it binds to chromatin but lacks histone replacement activity (swc5Delta and the ATPase-dead swr1-K727G). These results suggest that in htz1Delta the nucleosome remodelling activity of SWR1 affects chromatin integrity because of an attempt to replace H2A with Htz1 in the absence of the latter. This would impair transcription and, either directly or indirectly, other cellular processes. Specifically, we show that in htz1Delta, the SWR1 complex causes an accumulation of recombinogenic DNA damage by a mechanism dependent on phosphorylation of H2A at Ser129, a modification that occurs in response to DNA damage, suggesting that the SWR1 complex impairs the repair of spontaneous DNA damage in htz1Delta. In addition, SWR1 causes DSBs sensitivity in htz1Delta; consistently, in the absence of Htz1 the SWR1 complex bound near an endonuclease HO-induced DSB at the mating-type (MAT) locus impairs DSB-induced checkpoint activation. Our results support a stepwise mechanism for the replacement of H2A with Htz1 and demonstrate that a tight control of this mechanism is essential to regulate chromatin dynamics but also to prevent the deleterious consequences of an incomplete nucleosome remodelling.
Assuntos
Adenosina Trifosfatases/metabolismo , Genoma Fúngico/genética , Instabilidade Genômica , Histonas/deficiência , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Estresse Fisiológico/genéticaRESUMO
A new cluster of genes has been found downstream of the previously identified thnA2 gene. The gene products are similar to nonacylating aldehyde dehydrogenases (ThnG) and to proteins representing a complete beta-oxidation pathway (ThnH to ThnP). ThnG has a nonacylating NAD-dependent pimelic semialdehyde dehydrogenase activity that renders pimelic acid a seven-carbon dicarboxylic acid. For further metabolism via beta-oxidation, pimelic acid could be acylated by a constitutive acyl coenzyme A (acyl-CoA) ligase found in Sphingomonas macrogolitabida strain TFA or by ThnH, which would transfer CoA from a previously acylated molecule. The first round of beta-oxidation is expected to render glutaryl-CoA and acetyl-CoA. Glutaryl-CoA dehydrogenase (ThnN) would catalyze the oxidation and decarboxylation of glutaryl-CoA and yield crotonyl-CoA, which enters the central metabolism via acetyl-CoA. Mutagenesis studies have shown that these genes are not essential for growth on tetralin or fatty acids, although a thnG disruption mutant showed threefold less pimelic semialdehyde dehydrogenase activity. Transcriptional analysis indicated that these genes are induced by tetralin, subjected to catabolite repression, and regulated by the same regulatory factors previously identified to regulate other thn structural genes. In the present study, transcription initiation upstream of thnH and thnM has been detected by primer extension analysis, and putative promoters were identified by sequence analysis. In addition, binding of the activator ThnR to its putative binding sites at the PH and PM promoter regions has been characterized. These results provide a complete characterization of the biodegradation pathway of tetralin to central metabolites and describe the transcriptional organization of the thn operons in S. macrogolitabida strain TFA.
Assuntos
Aldeído Desidrogenase/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Sphingomonas/enzimologia , Sphingomonas/metabolismo , Tetra-Hidronaftalenos/metabolismo , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Ensaio de Desvio de Mobilidade Eletroforética , Deleção de Genes , Ordem dos Genes , Genes Bacterianos , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Família Multigênica , Oxirredução , Ácidos Pimélicos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Sítio de Iniciação de TranscriçãoRESUMO
The sequence of the extradiol dioxygenase ThnC, involved in tetralin biodegradation, was aligned with other extradiol dioxygenases involved in biodegradation of polycyclic compounds, and a three-dimensional model of ThnC, based on the structure of the previously crystallized 2,3-dihydroxybiphenyl dioxygenase from Burkholderia fungorum LB400, was built. In order to assess the functional importance of some non-active-site residues whose relevance could not be established by structural information, a number of positions surrounding the substrate-binding site were mutated in ThnC. Ten mutant proteins were purified and their activity towards 1,2-dihydroxytetralin, 1,2-dihydroxynaphthalene and 2,3-dihydroxybiphenyl was characterized. N213H, Q198H, G206M, A282R and A282G mutants increased k(cat)/K(m) at least twofold using 1,2-dihydroxytetralin as the substrate, thus showing that activity of ThnC is not maximized for this substrate. N213H and Q198H mutants increased k(cat)/K(m) using any of the substrates tested, thus showing the relevance for activity of these two histidines, which are highly conserved in dihydroxybiphenyl dioxygenases, but not present in dihydroxynaphthalene dioxygenases. Different substitutions in position 282 had different effects on general activity or substrate specificity, thus showing the functional importance of the most C-terminal beta-sheet of the protein. A251M and G206M mutants showed increased activity specifically for a particular substrate. N213H, G206M, A282R, A282G and Y177I substitutions resulted in enzymes more tolerant to acidic pH, the most striking effect being observed in mutant Y177I, which showed maximal activity at pH 5.5. In addition, Q198D and V175D mutants, which had altered K(m), also showed altered sensitivity to substrate inhibition, thus indicating that inhibition is exerted through the same binding site. This mutational analysis, therefore, identified conserved residues important for activity or substrate specificity, and also shed some light on the mechanism of substrate inhibition exhibited by extradiol dioxygenases.