RESUMO
Raisin aroma is a vital sensory characteristic that determines consumers' acceptance. Volatile organic compounds (VOCs) in fresh grapes, air-dried (AD), pre-treated air-dried (PAD), sun-dried (SD), and pre-treated sun-dried (PSD) raisins were analyzed, with 99 and 77 free- and bound-form compounds identified in centennial seedless grapes, respectively. The hexenal, (E)-2-hexenal, 1-hexanol, ethyl alcohol, and ethyl acetate in free-form while benzyl alcohol, ß-damascenone, gerenic acid in bound-form were the leading compounds. Overall, the concentration of aldehydes, alcohols, esters, acids, terpenoids, ketones, benzene, and phenols were abundant in fresh grapes but pyrazine and furan were identified in raisin. Out of 99 VOCs, 30 compounds had an odour active value above 1. The intensity of green, floral, and fruity aromas were quite higher in fresh grapes followed by AD-raisins, PAD-raisins, SD-raisins, and PSD-raisins. The intense roasted aroma was found in SD-raisins due to 2,6-diethylpyrazine and 3-ethyl-2,5-dimethylpyrazine. Among raisins, the concentration of unsaturated fatty acid oxidized and Maillard reaction volatiles were higher in SD-raisins and mainly contributed green, fruity and floral, and roasted aromas, respectively.
RESUMO
Development of new sources and isolation processes has recently enhanced the production of cellulose in many different colloidal states. Even though cellulose is widely used as a functional ingredient in the food industry, the relationship between the colloidal states of cellulose and its applications is mostly unknown. This review covers the recent progress on illustrating various colloidal states of cellulose and the influencing factors with special emphasis on the correlation between the colloidal states of cellulose and its applications in food industry. The associated unique colloidal states of cellulose like high aspect ratio, crystalline structure, surface charge, and wettability not only promote the stability of colloidal systems, but also help improve the nutritional aspects of cellulose by facilitating its interactions with digestive system. Further studies are required for the rational control and improvement of the colloidal states of cellulose and producing food systems with enhanced functional and nutritional properties.