Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BJA Open ; 5: 100118, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37587999

RESUMO

Background: During clinical anaesthesia, the administration of analgesics mostly relies on empirical knowledge and observation of the patient's reactions to noxious stimuli. Previous studies in healthy volunteers under controlled conditions revealed EEG activity in response to standardised nociceptive stimuli even at high doses of remifentanil and propofol. This pilot study aims to investigate the feasibility of using these standardised nociceptive stimuli in routine clinical practice. Methods: We studied 17 patients undergoing orthopaedic trauma surgery under general anaesthesia. We evaluated if the EEG could track standardised noxious phase-locked electrical stimulation and tetanic stimulation, a time-locked surrogate for incisional pain, before, during, and after the induction of general anaesthesia. Subsequently, we analysed the effect of tetanic stimulation on the surgical pleth index as a peripheral, vegetative, nociceptive marker. Results: We found that the phase-locked evoked potentials after noxious electrical stimulation vanished after the administration of propofol, but not at low concentrations of remifentanil. After noxious tetanic stimulation under general anaesthesia, there were no consistent spectral changes in the EEG, but the vegetative response in the surgical pleth index was statistically significant (Hedges' g effect size 0.32 [95% confidence interval 0.12-0.77], P=0.035). Conclusion: Our standardised nociceptive stimuli are not optimised for obtaining consistent EEG responses in patients during clinical anaesthesia. To validate and sufficiently reproduce EEG-based standardised stimulation as a marker for nociception in clinical anaesthesia, other pain models or stimulation settings might be required to transfer preclinical studies into clinical practice. Clinical trial registration: DRKS00017829.

2.
Sensors (Basel) ; 22(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35214406

RESUMO

Identification of nitrate reduction hotspots (NRH) can be instrumental in implementing targeted strategies for reducing nitrate loading from agriculture. In this study, we aimed to delineate possible NRH areas from soil depths of 80 to 180 cm in an artificially drained catchment by utilizing electrical conductivity (EC) values derived by the inversion of apparent electrical conductivity data measured by an electromagnetic induction instrument. The NRH areas were derived from the subzones generated from clustering the EC values via two methods, unsupervised ISODATA clustering and the Optimized Hot Spot Analysis, that highly complement each other. The clustering of EC values generated three classes, wherein the classes with high EC values correspond to NRH areas as indicated by their low redox potential values and nitrate (NO3-) concentrations. Nitrate concentrations in the NRH were equal to 13 to 17% of the concentrations in non-NRH areas and occupied 26% of the total area of the drainage catchments in the study. It is likely that, with the identification of NRH areas, the degree of nitrogen reduction in the vadose zone may be higher than initially estimated at the subcatchment scale.


Assuntos
Nitratos , Poluentes Químicos da Água , Agricultura , Condutividade Elétrica , Monitoramento Ambiental/métodos , Solo , Poluentes Químicos da Água/análise
3.
Front Hum Neurosci ; 14: 559969, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343313

RESUMO

Evoked potentials in the amplitude-time spectrum of the electroencephalogram are commonly used to assess the extent of brain responses to stimulation with noxious contact heat. The magnitude of the N- and P-waves are used as a semi-objective measure of the response to the painful stimulus: the higher the magnitude, the more painful the stimulus has been perceived. The strength of the N-P-wave response is also largely dependent on the chosen reference electrode site. The goal of this study was to examine which reference technique excels both in practical and theoretical terms when analyzing noxious contact heat evoked potentials (CHEPS) in the amplitude-time spectrum. We recruited 21 subjects (10 male, 11 female, mean age of 55.79 years). We applied seven noxious contact heat stimuli using two temperatures, 51°C, and 54°C, to each subject. During EEG analysis, we aimed to identify the referencing technique which produces the highest N-wave and P-wave amplitudes with as little artifactual influence as possible. For this purpose, we applied the following six referencing techniques: mathematically linked A1/A2 (earlobes), average reference, REST, AFz, Pz, and mathematically linked PO7/PO8. We evaluated how these techniques impact the N-P amplitudes of CHEPS based on our data from healthy subjects. Considering all factors, we found that mathematically linked earlobes to be the ideal referencing site to use when displaying and evaluating CHEPS in the amplitude-time spectrum.

4.
Sci Rep ; 6: 28690, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27356878

RESUMO

The Arctic is warming twice as fast as the global average with overlooked consequences for the preservation of the rich cultural and environmental records that have been stored for millennia in archaeological deposits. In this article, we investigate the oxic degradation of different types of organic archaeological deposits located in different climatic zones in West and South Greenland. The rate of degradation is investigated based on measurements of O2 consumption, CO2 production and heat production at different temperatures and water contents. Overall, there is good consistency between the three methods. However, at one site the, O2 consumption is markedly higher than the CO2 production, highlighting the importance of combining several measures when assessing the vulnerability of organic deposits. The archaeological deposits are highly vulnerable to degradation regardless of age, depositional and environmental conditions. Degradation rates of the deposits are more sensitive to increasing temperatures than natural soils and the process is accompanied by a high microbial heat production that correlates significantly with their total carbon content. We conclude that organic archaeology in the Arctic is facing a critical challenge that requires international action.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA