RESUMO
p38δ expression and/or activity are increased in human cutaneous malignancies, including invasive squamous cell carcinoma (SCC) and head and neck SCC, but the role of p38δ in cutaneous carcinogenesis has not been well-defined. We have reported that mice with germline loss of p38δ exhibited a reduced susceptibility to skin tumor development compared with wild-type mice in the two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical skin carcinogenesis model. Here, we report that p38δ gene ablation inhibited the growth of tumors generated from v-ras(Ha) -transformed keratinocytes in skin orthografts to nude mice, indicating that keratinocyte-intrinsic p38δ is required for Ras-induced tumorigenesis. Gene expression profiling of v-ras(Ha) -transformed p38δ-null keratinocytes revealed transcriptional changes associated with cellular responses linked to tumor suppression, such as reduced proliferation and increased differentiation, cell adhesion, and cell communications. Notably, a short-term DMBA/TPA challenge, modeling the initial stages of chemical skin carcinogenesis treatment, elicited an enhanced inflammation in p38δ-null skin compared with skin of wild-type mice, as assessed by measuring the expression of pro-inflammatory cytokines, including IL-1ß, IL-6, IL-17, and TNFα. Additionally, p38δ-null skin and p38δ-null keratinocytes exhibited increased p38α activation and signaling in response to acute inflammatory challenges, suggesting a role for p38α in stimulating the elevated inflammatory response in p38δ-null skin during the initial phases of the DMBA/TPA treatment compared with similarly treated p38δ(+/+) skin. Altogether, our results indicate that p38δ signaling regulates skin carcinogenesis not only by keratinocyte cell-autonomous mechanisms, but also by influencing the interaction between between the epithelial compartment of the developing skin tumor and its stromal microenvironment.
Assuntos
Proteína Quinase 13 Ativada por Mitógeno/genética , Neoplasias Cutâneas/genética , Pele/patologia , Proteínas ras/genética , Animais , Benzo(a)Antracenos/toxicidade , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Nus , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol/toxicidade , Proteínas ras/farmacologiaRESUMO
Expression of the PMLRARalpha fusion dominant-negative oncogene in the epidermis of transgenic mice resulted in spontaneous skin tumors attributed to changes in both the PML and RAR pathways [Hansen et al., Cancer Res 2003; 63:5257-5265]. To determine the contribution of PML to skin tumor susceptibility, transgenic mice were generated on an FVB/N background, that overexpressed the human PML protein in epidermis and hair follicles under the control of the bovine keratin 5 promoter. PML was highly expressed in the epidermis and hair follicles of these mice and was also increased in cultured keratinocytes where it was confined to nuclear bodies. While an overt skin phenotype was not detected in young transgenic mice, expression of keratin 10 (K10) was increased in epidermis and hair follicles and cultured keratinocytes. As mice aged, they exhibited extensive alopecia that was accentuated on the C57BL/6J background. Following skin tumor induction with 7, 12-dimethylbenz[a]anthracene (DMBA) as initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as promoter, papilloma multiplicity and size were decreased in the transgenic mice by 35%, and the conversion of papillomas to carcinomas was delayed. Cultured transgenic keratinocytes underwent premature senescence and upregulated transcripts for p16 and Rb but not p19 and p53. Together, these changes suggest that PML participates in regulating the growth and differentiation of keratinocytes that likely influence its activity as a suppressor for tumor development.
Assuntos
Genes Supressores de Tumor , Proteínas Nucleares/fisiologia , Neoplasias Cutâneas/genética , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Sequência de Bases , Carcinógenos/toxicidade , Primers do DNA , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase , Proteína da Leucemia Promielocítica , Neoplasias Cutâneas/induzido quimicamente , Acetato de Tetradecanoilforbol/toxicidade , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genéticaRESUMO
Protocols for preparing and culturing primary keratinocytes from newborn and adult mouse epidermis have evolved over the past 35 years. This protocol is now routinely applied to mice of various genetic backgrounds for in vitro studies of signaling pathways in differentiation and cell transformation, and for assessing the in vivo phenotype of altered keratinocytes in grafts of cells on immunodeficient mice. Crucial in the development and application of the procedure was the observation that keratinocytes proliferate in media of low calcium concentration, but rapidly commit to differentiation at calcium concentrations >0.07 mM after the initial attachment period. Preparing primary keratinocytes from ten newborn mice requires 2-3 h of hands-on time. Related procedures are also provided: preparing immature hair follicle buds, developing dermal hair follicles and fibroblasts from newborn mice, preparing primary keratinocytes from adult mice and grafting cell mixtures on athymic nude mice.
Assuntos
Técnicas de Cultura de Células/métodos , Derme/citologia , Folículo Piloso/citologia , Queratinócitos/citologia , Transplante de Tecidos/métodos , Animais , Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Camundongos , Camundongos MutantesRESUMO
The skin contains two known subpopulations of stem cells/epidermal progenitors: a basal keratinocyte population found in the interfollicular epithelium and cells residing in the bulge region of the hair follicle. The major role of the interfollicular basal keratinocyte population may be epidermal renewal, whereas the bulge population may only be activated and recruited to form a cutaneous epithelium in case of trauma. Using 3-dimensional cultures of murine skin under stress conditions in which only reserve epithelial cells would be expected to survive and expand, we demonstrate that a mesenchymal population resident in neonatal murine dermis has the unique potential to develop an epidermis in vitro. In monolayer culture, this dermal subpopulation has long-term survival capabilities in restricted serum and an inducible capacity to evolve into multiple cell lineages, both epithelial and mesenchymal, depending on culture conditions. When grafted subcutaneously, this dermal subpopulation gave rise to fusiform structures, reminiscent of disorganized muscle, that stained positive for smooth muscle actin and desmin; on typical epidermal grafts, abundant melanocytes appeared throughout the dermis that were not associated with hair follicles. The multipotential cells can be repeatedly isolated from neonatal murine dermis by a sequence of differential centrifugation and selective culture conditions. These results suggest that progenitors capable of epidermal differentiation exist in the mesenchymal compartment of an abundant tissue source and may have a function in mesenchymal-epithelial transition upon insult. Moreover, these cells could be available in sufficient quantities for lineage determination or tissue engineering applications.