Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 206(1-2): 175-186, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39369081

RESUMO

Fire is a major disturbance affecting ecosystems globally, but its impact on mutualisms has received minimal attention. Here, we use a long-term field experiment to investigate the impact of different fire regimes on globally important ant-honeydew and ant-extrafloral nectar (EFN) mutualistic interactions in an Australian tropical savanna. These interactions provide ants with a key energy source, while their plant and hemipteran hosts receive protection services. We examined ant interactions on species of Eucalyptus (lacking EFNs) and Acacia (with EFNs) in three replicate plots each of burning every 2 and 3 years early in the dry season, burning late in the dry season every 2 years, and unburnt for > 25 years. The proportions of plants with ant-honeydew interactions in Acacia (44.6%) and Eucalyptus (36.3%) were double those of Acacia plants with ant-EFN interactions (18.9%). The most common ants, representing 85% of all interactions, were behaviourally dominant species of Oecophylla, Iridomyrmex and Papyrius. Fire promoted the incidence of ant interactions, especially those involving EFNs on Acacia, which occurred on only 3% of plants in unburnt plots compared with 24% in frequently burnt plots. Fire also promoted the relative incidence of behaviourally dominant ants, which are considered the highest quality mutualists. Contrary to expectations, frequent fire did not result in a switching of behaviourally dominant ant partners from forest-adapted Oecophylla to arid-adapted Iridomyrmex. Our findings that frequent fire increases ant interactions mediated by honeydew and extrafloral nectar, and promotes the quality of ant mutualists, have important implications for protective services provided by ants in highly fire-prone ecosystems.


Assuntos
Formigas , Incêndios , Pradaria , Néctar de Plantas , Animais , Formigas/fisiologia , Austrália , Acacia , Simbiose , Eucalyptus , Ecossistema , Clima Tropical
2.
Ecol Appl ; 34(7): e3025, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39166511

RESUMO

Fire is a powerful tool for conservation management at a landscape scale, but a rigorous evidence base is often lacking for understanding its impacts on biodiversity in different biomes. Fire-induced changes to habitat openness have been identified as an underlying driver of responses of faunal communities, including for ants. However, most studies of the impacts of fire on ant communities consider only epigeic (foraging on the soil surface) species, which may not reflect the responses of species inhabiting other vertical strata. Here, we examine how the responses of ant communities vary among vertical strata in a highly fire-prone biome. We use a long-term field experiment to quantify the effects of fire on the abundance, richness, and composition of ant assemblages of four vertical strata (subterranean, leaf litter, epigeic, and arboreal) in an Australian tropical savanna. We first document the extent to which each stratum harbors distinct assemblages. We then assess how the assemblage of each stratum responds to three fire-related predictors: fire frequency, fire activity, and vegetation cover. Each stratum harbored a distinct ant assemblage and showed different responses to fire. Leaf litter and epigeic ants were most sensitive to fire because it directly affects their microhabitats, but they showed contrasting negative and positive responses, respectively. Subterranean ants were the least sensitive because of the insulating effects of soil. Our results show that co-occurring species of the same taxonomic group differ in the strength and direction of their response to fire depending on the stratum they inhabit. As such, effective fire management for biodiversity conservation should consider species in all vertical strata.


Assuntos
Formigas , Incêndios , Formigas/fisiologia , Animais , Biodiversidade
3.
Ecology ; 104(9): e4143, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37471112

RESUMO

Fire is a dominant ecological force shaping many faunal communities globally. Fire affects fauna either directly, such as by killing individuals, or indirectly, such as by modifying vegetation structure. Vegetation structure itself also modulates fire frequency and intensity. As such, faunal responses to fire need to be seen through the lens of variable fire activity and vegetation structure. Here, we incorporate information on fire activity and vegetation structure to enhance an understanding of the response of ants to long-term (17-year) experimental fire treatments in an extremely fire-prone tropical savanna in northern Australia. Previous analysis revealed limited divergence in ant communities after 5 years of experimental fire treatment. Hence, we first investigated the extent to which ant communities diverged over a subsequent 12 years of treatment. We then assessed the relative contribution of fire treatment, cumulative fire intensity (fire activity), and woody cover to responses of ant species frequency of occurrence, richness, and composition. We found that, even after 17 years, fire treatments explained little variation in any ant response variable. In contrast, woody cover was a strong predictor for all of them, while fire activity was a moderate predictor for abundance and richness. Ant species occurrence and richness increased in open habitats receiving higher levels of fire activity, compared with plots with higher vegetation cover experiencing low (or no) fire activity. Moreover, species composition differed between plots with high and low vegetation cover. Our findings provide experimental support to the principle that the effects of fire on fauna are primarily indirect, via its effect on vegetation structure. Furthermore, our results show that a "uniform" fire regime does not have uniform impacts on the ant fauna, because of variability imposed by interactions between vegetation structure and fire activity. This helps to explain why there is often a weak relationship between pyrodiversity and biodiversity, and it lessens the need for active management of pyrodiversity to maintain biodiversity.


Assuntos
Formigas , Humanos , Animais , Formigas/fisiologia , Austrália , Pradaria , Ecossistema , Biodiversidade
4.
Ecology ; 103(1): e03549, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618920

RESUMO

Determining how species thermal limits correlate with climate is important for understanding biogeographic patterns and assessing vulnerability to climate change. Such analyses need to consider thermal gradients at multiple spatial scales. Here we relate thermal traits of rainforest ants to microclimate conditions from ground to canopy (microgeographic scale) along an elevation gradient (mesogeographic scale) and calculate warming tolerance to assess climate change vulnerability in the Australian Wet Tropics Bioregion. We test the thermal adaptation and thermal niche asymmetry hypotheses to explain interspecific patterns of thermal tolerance at these two spatial scales. We tested cold tolerance (CTmin ), heat tolerance (CTmax ), and calculated thermal tolerance range (CTrange ), using ramping assays for 74 colonies of 40 ant species collected from terrestrial and arboreal habitats at lowland and upland elevation sites and recorded microclimatic conditions for one year. Within sites, arboreal ants were exposed to hotter microclimates and on average had a 4.2°C (95% CI: 2.7-5.6°C) higher CTmax and 5.3°C (95% CI: 3.5-7°C) broader CTrange than ground-dwelling ants. This pattern was consistent across the elevation gradient, whether it be the hotter lowlands or the cooler uplands. Across elevation, upland ants could tolerate significantly colder temperatures than lowland ants, whereas the change in CTmax was less pronounced, and CTrange did not change over elevation. Differential exposure to microclimates, due to localized niche preferences, drives divergence in CTmax , while environmental temperatures along the elevation gradient drive divergence in CTmin . Our results suggest that both processes of thermal adaptation and thermal niche asymmetry are at play, depending on the spatial scale of observation, and we discuss potential mechanisms underlying these patterns. Despite the broad thermal tolerance range of arboreal rainforest ants, lowland arboreal ants had the lowest warming tolerance and may be most vulnerable to climate change.


Assuntos
Formigas , Termotolerância , Animais , Austrália , Floresta Úmida , Temperatura , Árvores
5.
Oecologia ; 198(1): 267-277, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34767071

RESUMO

Chronic anthropogenic disturbance (CAD) and climate change represent two of the major threats to biodiversity globally, but their combined effects are not well understood. Here we investigate the individual and interactive effects of increasing CAD and decreasing rainfall on the composition and taxonomic (TD), functional (FD) and phylogenetic diversity (PD) of plants possessing extrafloral nectaries (EFNs) in semi-arid Brazilian Caatinga. EFNs attract ants that protect plants against insect herbivore attack and are extremely prevalent in the Caatinga flora. EFN-bearing plants were censused along gradients of disturbance and rainfall in Catimbau National Park in north-eastern Brazil. We recorded a total of 2243 individuals belonging to 21 species. Taxonomic and functional composition varied along the rainfall gradient, but not along the disturbance gradient. There was a significant interaction between increasing disturbance and decreasing rainfall, with CAD leading to decreased TD, FD and PD in the most arid areas, and to increased TD, FD and PD in the wettest areas. We found a strong phylogenetic signal in the EFN traits we analysed, which explains the strong matching between patterns of FD and PD along the environmental gradients. The interactive effects of disturbance and rainfall revealed by our study indicate that the decreased rainfall forecast for Caatinga under climate change will increase the sensitivity of EFN-bearing plants to anthropogenic disturbance. This has important implications for the availability of a key food resource, which would likely have cascading effects on higher trophic levels.


Assuntos
Efeitos Antropogênicos , Formigas , Animais , Brasil , Humanos , Filogenia , Néctar de Plantas
6.
Zootaxa ; 5048(1): 141-144, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34810810

RESUMO

Epopostruma is an uncommon genus of myrmicine ants endemic to relatively mesic regions of southern and eastern Australia. Here we describe a new species recently recorded from the 'Top End of Australias Northern Territory, E. topendi sp. n. from Melville Island and Nitmiluk National Park. The new species is known from one specimen from each of two sites in the Australian monsoonal tropics, the only records of the genus from this region. This addition brings the number of described species of Epopostruma to twenty.


Assuntos
Formigas , Animais
7.
Ecol Appl ; 31(4): e02309, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33605502

RESUMO

The contribution of urban greenspaces to support biodiversity and provide benefits for people is increasingly recognized. However, ongoing management practices favor vegetation oversimplification, often limiting greenspaces to lawns and tree canopy rather than multi-layered vegetation that includes under- and midstorey, and the use of nonnative species. These practices hinder the potential of greenspaces to sustain indigenous biodiversity, particularly for taxa like insects that rely on plants for food and habitat. Yet, little is known about which plant species may maximize positive outcomes for taxonomically and functionally diverse insect communities in greenspaces. Additionally, while cities are expected to experience high rates of introductions, quantitative assessments of the relative occupancy of indigenous vs. introduced insect species in greenspace are rare, hindering understanding of how management may promote indigenous biodiversity while limiting the establishment of introduced insects. Using a hierarchically replicated study design across 15 public parks, we recorded occurrence data from 552 insect species on 133 plant species, differing in planting design element (lawn, midstorey, and tree canopy), midstorey growth form (forbs, lilioids, graminoids, and shrubs) and origin (nonnative, native, and indigenous), to assess (1) the relative contributions of indigenous and introduced insect species and (2) which plant species sustained the highest number of indigenous insects. We found that the insect community was overwhelmingly composed of indigenous rather than introduced species. Our findings further highlight the core role of multi-layered vegetation in sustaining high insect biodiversity in urban areas, with indigenous midstorey and canopy representing key elements to maintain rich and functionally diverse indigenous insect communities. Intriguingly, graminoids supported the highest indigenous insect richness across all studied growth forms by plant origin groups. Our work highlights the opportunity presented by indigenous understory and midstorey plants, particularly indigenous graminoids, in our study area to promote indigenous insect biodiversity in urban greenspaces. Our study provides a blueprint and stimulus for architects, engineers, developers, designers, and planners to incorporate into their practice plant species palettes that foster a larger presence of indigenous over regionally native or nonnative plant species, while incorporating a broader mixture of midstorey growth forms.


Assuntos
Biodiversidade , Parques Recreativos , Animais , Cidades , Ecossistema , Humanos , Insetos , Plantas
8.
Ecol Evol ; 9(15): 8601-8615, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31410265

RESUMO

A central prediction of niche theory is that biotic communities are structured by niche differentiation arising from competition. To date, there have been numerous studies of niche differentiation in local ant communities, but little attention has been given to the macroecology of niche differentiation, including the extent to which particular biomes show distinctive patterns of niche structure across their global ranges. We investigated patterns of niche differentiation and competition in ant communities in tropical rainforests, using different baits reflecting the natural food spectrum. We examined the extent of temporal and dietary niche differentiation and spatial segregation of ant communities at five rainforest sites in the neotropics, paleotropics, and tropical Australia. Despite high niche overlap, we found significant dietary and temporal niche differentiation in every site. However, there was no spatial segregation among foraging ants at the community level, despite strong competition for preferred food resources. Although sucrose, melezitose, and dead insects attracted most ants, some species preferentially foraged on seeds, living insects, or bird feces. Moreover, most sites harbored more diurnal than nocturnal species. Overall niche differentiation was strongest in the least diverse site, possibly due to its lower number of rare species. Both temporal and dietary differentiation thus had strong effects on the ant assemblages, but their relative importance varied markedly among sites. Our analyses show that patterns of niche differentiation in ant communities are highly idiosyncratic even within a biome, such that a mechanistic understanding of the drivers of niche structure in ant communities remains elusive.

9.
Oecologia ; 190(2): 433-443, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31069514

RESUMO

Resource-ratio theory predicts that consumers should achieve optimal ratios of complementary nutrients. Accordingly, different trophic groups are expected to vary in their N-limitation depending on the extent to which they feed primarily on carbohydrate (CHO) or protein. Among arboreal ants, N-limitation ranges from high (for trophobiont tenders), intermediate (leaf foragers) and low (predators). We report results from a manipulative field experiment in a Brazilian savanna that tests the differential attractiveness of nitrogen and CHO to arboreal ants, as well as experimentally examines changes in broader ant foraging patterns in response to protein and CHO supplementation. Every tree within 32 20 × 20 m plots were supplemented with either protein, CHO; protein + CHO or a water control (n = 8 in each case) for a 7-day period in each of the wet and dry seasons. As predicted, different trophic groups responded differentially to supplementation treatment according to the extent of their N-limitation. The richness and abundance of the most N-limited group (trophobiont tenders) was highest at protein supplements, whereas less N-limited trophic groups showed highest species richness (leaf foragers) or abundance (predators) at CHO supplements. Protein supplementation markedly increased the general foraging abundance of trophobiont tenders, but decreased the abundance of leaf foragers. We attribute the latter to increased competition from behaviorally dominant trophobiont tenders. Our study provides experimental evidence that nutrient availability is a major factor influencing arboreal ant communities, both directly through the provision of different resources, and indirectly through increased competitive pressure.


Assuntos
Formigas , Animais , Brasil , Suplementos Nutricionais , Pradaria , Árvores
10.
J Anim Ecol ; 88(6): 870-880, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30883729

RESUMO

Anthropogenic disturbance and climate change are the main drivers of biodiversity loss and ecological services around the globe. There is concern that climate change will exacerbate the impacts of disturbance and thereby promote biotic homogenization, but its consequences for ecological services are unknown. We investigated the individual and interactive effects of increasing chronic anthropogenic disturbance (CAD) and aridity on seed dispersal services provided by ants in Caatinga vegetation of north-eastern Brazil. The study was conducted in Catimbau National Park, Pernambuco, Brazil. Within an area of 214 km2 , we established nineteen 50 × 20 m plots that encompassed gradients of both CAD and aridity. We offered diaspores of six plant species, three myrmecochorous diaspores and three fleshy fruits that are secondarily dispersed by ants. We then quantified the number of interactions, seed removal rate and dispersal distances, and noted the identities of interacting ant species. Finally, we used pitfall trap data to quantify the abundances of ant disperser species in each plot. Our results show that overall composition of ant disperser species varied along the gradients of CAD and aridity, but the composition of high-quality dispersers varied only with aridity. The total number of interactions, rates of removal and mean distance of removal all declined with increasing aridity, but they were not related to CAD. These same patterns were found when considering only high-quality disperser species, driven by the responses of the dominant disperser Dinoponera quadriceps. We found little evidence of interactive effects of CAD and aridity on seed dispersal services by ants. Our study indicates that CAD and aridity act independently on ant-mediated seed dispersal services in Caatinga, such that the impacts of anthropogenic disturbance are unlikely to change under the forecast climate of increased aridity. However, our findings highlight the vulnerability of seed dispersal services provided by ants in Caatinga under an increasingly arid climate due to low functional redundancy in high-quality disperser species. Given the large number of plant species dependent on ants for seed dispersal, this has important implications for future plant recruitment and, consequently, for the composition of Caatinga plant communities.


Assuntos
Formigas , Dispersão de Sementes , Animais , Brasil , Mudança Climática , Meio Ambiente , Sementes
11.
J Anim Ecol ; 88(3): 350-362, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30280380

RESUMO

Ecological disturbance is fundamental to the dynamics of biological communities, yet a conceptual framework for understanding the responses of faunal communities to disturbance remains elusive. Here, I propose five principles for understanding the disturbance dynamics of ants-a globally dominant faunal group that is widely used as bioindicators in land management, which appear to have wide applicability to other taxa. These principles are as follows: (1) The most important effects of habitat disturbance on ants are typically indirect, through its effects on habitat structure, microclimate, resource availability and competitive interactions; (2) habitat openness is a key driver of variation in ant communities; (3) ant species responses to disturbance are to a large degree determined by their responses to habitat openness; (4) the same disturbance will have different effects on ants in different habitats, because of different impacts on habitat openness; and (5) ant community responses to the same disturbance will vary according to ant functional composition and biogeographical history in relation to habitat openness. I illustrate these principles using results primarily from studies of ant responses to fire, a dominant agent of disturbance globally, to provide a common disturbance currency for comparative analysis. I argue that many of the principles also apply to other faunal groups and so can be considered as general ecological "laws." As is the case for ants, many impacts of habitat disturbance on other faunal groups are fundamentally related to habitat openness, the effects of disturbance on it and the functional composition of species in relation to it.


Assuntos
Formigas , Incêndios , Animais , Biota , Ecologia , Ecossistema
12.
Glob Chang Biol ; 24(10): 4614-4625, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29851235

RESUMO

The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities.


Assuntos
Formigas/fisiologia , Biodiversidade , Animais , Clima , Ecossistema
13.
Ecol Appl ; 28(7): 1808-1817, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29939460

RESUMO

Predicting community responses to disturbance is a major challenge for both ecology and ecosystem management. A particularly challenging issue is that the same type and intensity of disturbance can have different impacts in different habitats. We investigate how habitat contingency influences ant community responses to disturbance in arid Australia, testing the hypothesis that disturbance has a greater impact in more complex habitats. We also assess the effectiveness of a highly simplified ant assessment protocol that considers larger species only. We sampled ants at 46 sites from two habitats (Chandler, low chenopod shrubland; and mulga, low woodland) with contrasting complexity, using distance from water as a surrogate for variation in grazing intensity. We assessed variation in habitat structural variables (basal area of perennial grass, and cover of herbs, litter, and bare ground) and ant communities in relation to habitat and distance from water, first using data from the entire ant community and then for larger ants (>4 mm body length) only. Site species richness was almost twice as high in mulga, the more structurally complex habitat, than in Chandler, and ant communities in mulga showed far more variation in relation to distance from water. Litter cover was the key environmental variable associated with the interaction between grazing and habitat: it increased with increasing distance from water in mulga and was virtually absent from Chandler. Analysis of only larger species revealed the same patterns of variation in ant abundance, species richness and composition in relation to habitat and grazing as shown by entire ant communities. Our findings support the hypothesis that disturbance impacts on faunal communities increase with increasing habitat complexity. An appreciation of such habitat contingency is important for a predictive understanding and therefore effective management of disturbances such as rangeland grazing. Our findings also show that simplified assessment can provide robust information on the responses of highly diverse ant communities to disturbance, which enhances their feasibility for use as bio-indicators in land management.


Assuntos
Criação de Animais Domésticos , Formigas/fisiologia , Ecossistema , Animais , Biodiversidade , Bovinos , Northern Territory
14.
Oecologia ; 188(2): 333-342, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29736865

RESUMO

Terrestrial ectotherms are likely to be especially sensitive to rising temperatures over coming decades. Thermal limits are used to measure climatic tolerances that potentially affect ectotherm distribution. While there is a strong relationship between the critical thermal maximum (CTmax) of insects and their latitudinal ranges, the nature of this relationship across elevation is less clear. Here we investigated the combined relationships between CTmax, elevation and ant body mass, given that CTmax can also be influenced by body mass, in the World Heritage-listed rainforests of the Australian Wet Tropics. We measured the CTmax and body mass of 20 ant species across an elevational gradient from 350 to 1000 m a.s.l. Community CTmax did not vary systematically with increasing elevation and there was no correlation between elevation and elevational ranges of species. However, body mass significantly decreased at higher elevations. Despite the negative correlation between CTmax and body mass at the community level, there was no significant difference in CTmax of different-sized ants within a species. These findings are not consistent with either the climatic variability hypothesis, Rapoport's rule or Bergmann's rule. Models indicated that elevation and body mass had limited influences on CTmax. Our results suggest that the distribution of most montane ants in the region is not strongly driven by thermal limitation, and climate change will likely impact ant species differently. This is likely to occur primarily through changes in rainfall via its effects on vegetation structure and therefore thermal microhabitats, rather than through direct temperature changes.


Assuntos
Formigas , Animais , Austrália , Mudança Climática , Floresta Úmida , Temperatura
15.
Insect Sci ; 25(3): 519-526, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27629082

RESUMO

Although ants are an ecologically dominant and extensively studied faunal group throughout the tropics, there is a poor understanding of tropical ant diversity and distribution at large spatial scales. Here we use a collection developed from 3 decades of ant surveys to present the first analysis of ant diversity and biogeography of a large tropical region. Our objective was to document the species richness, composition, and biogeographic distributions of the ant fauna of the 400 000 km2 "Top End" of Australia's Northern Territory. The known Top End ant fauna comprises 901 native species from 59 genera. The richest genera are Pheidole (90 species), Melophorus (83), Monomorium (83), Camponotus (71), Meranoplus (63), Polyrhachis (57), Rhytidoponera (50), Tetramorium (43), Cerapachys (32), and Iridomyrmex (31). The fauna is the center of diverse radiations within species-groups of genera such as Meranoplus, Rhytidoponera, and Leptogenys. It also includes IndoMalayan species that have likely bypassed the normal dispersal route into Australia through Cape York Peninsula in North Queensland. Faunistic similarity with other regions of far northern Australia is associated more with rainfall than with geographic proximity. Most (60%) of Top End ant species have not been recorded elsewhere, and, despite uncertainties relating to species delimitation and sampling intensity, this appears to be a credible estimate of the level of endemism. Such exceptionally high endemism can be attributed to the Top End's geographic isolation from other regions of northern Australia with comparably high rainfall.


Assuntos
Formigas , Biodiversidade , Animais , Geografia , Northern Territory , Clima Tropical
16.
Ecol Evol ; 7(20): 8442-8455, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29075461

RESUMO

Ecosystem restoration can help reverse biodiversity loss, but whether faunal communities of forests undergoing restoration converge with those of primary forest over time remains contentious. There is a need to develop faunal indicators of restoration success that more comprehensively reflect changes in biodiversity and ecosystem function. Ants are an ecologically dominant faunal group and are widely advocated as ecological indicators. We examine ant species and functional group responses on a chronosequence of rainforest restoration in northern Australia, and develop a novel method for selecting and using indicator species. Four sampling techniques were used to survey ants at 48 sites, from grassland, through various ages (1-24 years) of restoration plantings, to mature forest. From principal components analysis of seven vegetation metrics, we derived a Forest Development Index (FDI) of vegetation change along the chronosequence. A novel Ant Forest Indicator Index (AFII), based on the occurrences of ten key indicator species associated with either grassland or mature forest, was used to assess ant community change with forest restoration. Grasslands and mature forests supported compositionally distinct ant communities at both species and functional levels. The AFII was strongly correlated with forest development (FDI). At forest restoration sites older than 5-10 years that had a relatively closed canopy, ant communities converged on those of mature rainforest, indicating a promising restoration trajectory for fauna as well as plants. Our findings reinforce the utility of ants as ecological indicators and emphasize the importance of restoration methods that achieve rapid closed-canopy conditions. The novel AFII assessed restoration status from diverse and patchily distributed species, closely tracking ant community succession using comprehensive species-level data. It has wide applicability for assessing forest restoration in a way that is relatively independent of sampling methodology and intensity, and without a need for new comparative data from reference sites.

17.
Ecol Evol ; 7(13): 4607-4619, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28690791

RESUMO

Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns. Transect networks provide cost-effective and robust insights into ecological and evolutionary adaptation and improve forecasting of ecosystem change. We draw on the experience and research facilitated by the Australian Transect Network to demonstrate our case, with examples, to clarify how population- and community-level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. This integration can provide a spatiotemporal understanding of past and future climate-induced changes, which will inform effective management actions for promoting biodiversity resilience.

18.
Ecol Evol ; 7(1): 145-188, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28070282

RESUMO

The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.

19.
Ecology ; 98(3): 883-884, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27984661

RESUMO

What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set.


Assuntos
Formigas/fisiologia , Bases de Dados Factuais , Ecologia , Animais , Formigas/classificação , Ecossistema
20.
Artigo em Inglês | MEDLINE | ID: mdl-27502382

RESUMO

For decades, there has been enormous scientific interest in tropical savannahs and grasslands, fuelled by the recognition that they are a dynamic and potentially unstable biome, requiring periodic disturbance for their maintenance. However, that scientific interest has not translated into widespread appreciation of, and concern about threats to, their biodiversity. In terms of biodiversity, grassy biomes are considered poor cousins of the other dominant biome of the tropics-forests. Simple notions of grassy biomes being species-poor cannot be supported; for some key taxa, such as vascular plants, this may be valid, but for others it is not. Here, we use an analysis of existing data to demonstrate that high-rainfall tropical grassy biomes (TGBs) have vertebrate species richness comparable with that of forests, despite having lower plant diversity. The Neotropics stand out in terms of both overall vertebrate species richness and number of range-restricted vertebrate species in TGBs. Given high rates of land-cover conversion in Neotropical grassy biomes, they should be a high priority for conservation and greater inclusion in protected areas. Fire needs to be actively maintained in these systems, and in many cases re-introduced after decades of inappropriate fire exclusion. The relative intactness of TGBs in Africa and Australia make them the least vulnerable to biodiversity loss in the immediate future. We argue that, like forests, TGBs should be recognized as a critical-but increasingly threatened-store of global biodiversity.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Pradaria , Clima Tropical , Animais , Plantas , Chuva , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA