Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 907: 174301, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34224700

RESUMO

Recreational use of synthetic cannabinoids (SCs) is associated with desirable euphoric and relaxation effects as well as adverse effects including anxiety, agitation and psychosis. These SC-mediated actions represent a combination of potentiated cannabinoid receptor signaling and "off-target" receptor activity. The goal of this study was to compare the efficacy of various classes of SCs in stimulating CB1 receptors and activating "off-target" transient receptor potential (TRP) channels. Cannabinoid-type 1 (CB1) receptor activity was determined by measuring SC activation of G protein-gated inward rectifier K+ (GIRK) channels using a membrane potential-sensitive fluorescent dye assay. SC opening of vanilloid type-1 (TRPV1) channels was measured by recording intracellular Ca2+ transients. All of the SCs tested activated the GIRK channel with an efficacy of 4-fluoro MDMB-BUTINACA > 5-fluoro MDMB-PICA > MDMB-4en-PINACA ≈ WIN 55,212-2 > AB-FUBINACA > AM1220 ≈ JWH-122 N-(5-chloropentyl) > AM1248 > JWH-018 ≈ XLR-11 ≈ UR-144. The potency of the SCs at the CB1 receptor was 5-fluoro MDMB-PICA ≈ 4-fluoro MDMB-BUTINACA > AB-FUBINACA ≈ MDMB-4en-PINACA > JWH-018 > AM1220 > XLR-11 > JWH-122 N-(5-chloropentyl) > WIN 55,212-2 ≈ UR-144 > AM1248. In contrast, when tested at a SC concentration that produced a maximal effect on the Gi/GIRK channel, only XLR-11, UR-144 and AM1220 caused a significant activation of the TRPV1 channels. The TRPV1 channel/Ca2+ signal measured during application of 10 µM XLR-11 was similar to the signal induced by the endocannabinoid N-arachidonoylethanolamine (AEA). Thus, while various SCs share the ability to stimulate CB1 receptor/Gi signaling, they display limited efficacy in opening TRPV1 channels.


Assuntos
Canabinoides , Indóis , Naftalenos , Receptor CB1 de Canabinoide
2.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854313

RESUMO

Synthetic cannabinoids (SCs) are a class of new psychoactive substances (NPSs) that exhibit high affinity binding to the cannabinoid CB1 and CB2 receptors and display a pharmacological profile similar to the phytocannabinoid (-)-trans-Δ9-tetrahydrocannabinol (THC). SCs are marketed under brand names such as K2 and Spice and are popular drugs of abuse among male teenagers and young adults. Since their introduction in the early 2000s, SCs have grown in number and evolved in structural diversity to evade forensic detection and drug scheduling. In addition to their desirable euphoric and antinociceptive effects, SCs can cause severe toxicity including seizures, respiratory depression, cardiac arrhythmias, stroke and psychosis. Binding of SCs to the CB1 receptor, expressed in the central and peripheral nervous systems, stimulates pertussis toxin-sensitive G proteins (Gi/Go) resulting in the inhibition of adenylyl cyclase, a decreased opening of N-type Ca2+ channels and the activation of G protein-gated inward rectifier (GIRK) channels. This combination of signaling effects dampens neuronal activity in both CNS excitatory and inhibitory pathways by decreasing action potential formation and neurotransmitter release. Despite this knowledge, the relationship between the chemical structure of the SCs and their CB1 receptor-mediated molecular actions is not well understood. In addition, the potency and efficacy of newer SC structural groups has not been determined. To address these limitations, various cell-based assay technologies are being utilized to develop structure versus activity relationships (SAR) for the SCs and to explore the effects of these compounds on noncannabinoid receptor targets. This review focuses on describing and evaluating these assays and summarizes our current knowledge of SC molecular pharmacology.


Assuntos
Canabinoides/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Adolescente , Animais , Canabinoides/química , Humanos , Masculino , Modelos Moleculares , Estrutura Molecular , Receptor CB1 de Canabinoide/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Adulto Jovem
3.
J Pharmacol Toxicol Methods ; 94(Pt 1): 44-49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29730318

RESUMO

The cannabinoid CB1 receptor is expressed throughout the central nervous system where it functions to regulate neurotransmitter release and synaptic plasticity. While the CB1 receptor has been identified as a target for both natural and synthetic cannabinoids, the specific downstream signaling pathways activated by these various ligands have not been fully described. In this study, we developed a real-time membrane potential fluorescent assay for cannabinoids using pituitary AtT20 cells that endogenously express G protein-gated inward rectifier K+ (GIRK) channels and were stably transfected with the CB1 receptor using a recombinant lentivirus. In whole-cell patch clamp experiments application of the cannabinoid agonist WIN 55,212-2 to AtT20 cells expressing the CB1 receptor (AtT20/CB1) activated GIRK currents that were blocked by BaCl2. WIN 55,212-2 activation of the GIRK channels was associated with a time- and concentration-dependent (EC50 = 309 nM) hyperpolarization of the membrane potential in the AtT20/CB1 cells when monitored using a fluorescent membrane potential-sensitive dye. The WIN 55,212-2-induced fluorescent signal was inhibited by pretreatment of the cells with either the GIRK channel blocker tertiapin-Q or the CB1 receptor antagonist SR141716. The cannabinoids displayed a response of WIN 55,212-2 ≈ anandamide (AEA) > CP 55,940 > Δ9-tetrahydrocannabinol (THC) when maximal concentrations of the four ligands were tested in the assay. Thus, the AtT20/CB1 cell fluorescent assay will provide a straightforward and efficient methodology for examining cannabinoid-stimulated Gi signaling.


Assuntos
Bioensaio/métodos , Canabinoides/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Benzoxazinas/farmacologia , Linhagem Celular Tumoral , Fluorescência , Corantes Fluorescentes/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Morfolinas/farmacologia , Naftalenos/farmacologia , Rimonabanto/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA