Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Methods Mol Biol ; 2688: 135-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37410290

RESUMO

Metabolites reflect the biological state of cells and tissue, and metabolomics is therefore a field of high interest both to understand normal physiological functions and disease development. When studying heterogeneous tissue samples, mass spectrometry imaging (MSI) is a valuable tool as it conserves the spatial distribution of analytes on tissue sections. A large proportion of metabolites are, however, small and polar, making them vulnerable to delocalizing through diffusion during sample preparation. Here we present a sample preparation method optimized to limit diffusion and delocalization of small polar metabolites in fresh frozen tissue sections. This sample preparation protocol includes cryosectioning, vacuum frozen storage, and matrix application. The methods described were primely developed for matrix-assisted laser desorption/ionization (MALDI) MSI, but the protocol describing cryosectioning and vacuum freezing storage can also be applied before desorption electrospray ionization (DESI) MSI. Our vacuum drying and vacuum packing approach offers a particular advantage to limit delocalization and safe storage.


Assuntos
Diagnóstico por Imagem , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Manejo de Espécimes , Metabolômica
2.
Methods Mol Biol ; 2688: 161-172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37410292

RESUMO

Molecular visualization of metabolites, lipids, and proteins by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is becoming an in-demand analytical approach to aid the histopathological analysis of breast cancer. Particularly, proteins seem to play a role in cancer progression, and specific proteins are currently used in the clinic for staging. Formalin-fixed paraffin-embedded (FFPE) tissues are ideal for correlating the molecular markers with clinical outcomes due to their long-term storage. So far, to obtain proteomic information by MSI from this kind of tissue, antigen retrieval and tryptic digestion steps are required. In this chapter, we present a protocol to spatially detect small proteins in tumor and necrotic regions of patient-derived breast cancer xenograft FFPE tissues without employing any on-tissue digestion. This protocol can be used for other kinds of FFPE tissue following specific optimization of the sample preparation phases.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Proteômica/métodos , Fixação de Tecidos/métodos , Proteínas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Inclusão em Parafina , Formaldeído/química
3.
Metallomics ; 14(3)2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35294013

RESUMO

A rapid and cost-efficient tissue preparation protocol for laser ablation-inductively coupled plasma-mass spectrometry imaging (LA-ICP-MSI) has been developed within this study as an alternative to the current gold standard using fresh-frozen samples or other preparation techniques such as formalin fixation (FFix) and formalin-fixed paraffin-embedding (FFPE). Samples were vacuum dried at room temperature (RT) and stored in sealed vacuum containers for storage and shipping between collaborating parties. We compared our new protocol to established methods using prostate tissue sections investigating typical endogenous elements such as zinc, iron, and phosphorous with LA-ICP-MSI. The new protocol yielded comparable imaging results as fresh-frozen sections. FFPE sections were also tested due to the wide use and availability of FFPE tissue. However, the FFPE protocol and the FFix alone led to massive washout of the target elements on the sections tested in this work. Therefore, our new protocol presents an easy and rapid alternative for tissue preservation with comparable results to fresh-frozen sections for LA-ICP-MSI. It overcomes washout risks of commonly used tissue fixation techniques and does not require expensive and potentially unstable and time-critical shipping of frozen material on dry ice. Additionally, this protocol is likely applicable for several bioimaging approaches, as the dry condition may act comparable to other dehydrating fixatives, such as acetone or methanol, preventing degradation while avoiding washout effects.


Assuntos
Formaldeído , Terapia a Laser , Formaldeído/química , Espectrometria de Massas/métodos , Inclusão em Parafina/métodos , Fixação de Tecidos/métodos
4.
Proteomics ; 22(10): e2100223, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35170848

RESUMO

MALDI MS imaging (MSI) is a powerful analytical tool for spatial peptide detection in heterogeneous tissues. Proper sample preparation is crucial to achieve high quality, reproducible measurements. Here we developed an optimized protocol for spatially resolved proteolytic peptide detection with MALDI time-of-flight MSI of fresh frozen prostate tissue sections. The parameters tested included four different tissue washes, four methods of protein denaturation, four methods of trypsin digestion (different trypsin densities, sprayers, and incubation times), and five matrix deposition methods (different sprayers, settings, and matrix concentrations). Evaluation criteria were the number of detected and excluded peaks, percentage of high mass peaks, signal-to-noise ratio, spatial localization, and average intensities of identified peptides, all of which were integrated into a weighted quality evaluation scoring system. Based on these scores, the optimized protocol included an ice-cold EtOH+H2 O wash, a 5 min heating step at 95°C, tryptic digestion incubated for 17h at 37°C and CHCA matrix deposited at a final amount of 1.8 µg/mm2 . Including a heat-induced protein denaturation step after tissue wash is a new methodological approach that could be useful also for other tissue types. This optimized protocol for spatial peptide detection using MALDI MSI facilitates future biomarker discovery in prostate cancer and may be useful in studies of other tissue types.


Assuntos
Peptídeos , Próstata , Humanos , Masculino , Próstata/metabolismo , Proteínas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tripsina/metabolismo
5.
Metabolites ; 11(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34564393

RESUMO

The association between lipid metabolism and long-term outcomes is relevant for tumor diagnosis and therapy. Archival material such as formalin-fixed and paraffin embedded (FFPE) tissues is a highly valuable resource for this aim as it is linked to long-term clinical follow-up. Therefore, there is a need to develop robust methodologies able to detect lipids in FFPE material and correlate them with clinical outcomes. In this work, lipidic alterations were investigated in patient-derived xenograft of breast cancer by using a matrix-assisted laser desorption ionization mass spectrometry (MALDI MSI) based workflow that included antigen retrieval as a sample preparation step. We evaluated technical reproducibility, spatial metabolic differentiation within tissue compartments, and treatment response induced by a glutaminase inhibitor (CB-839). This protocol shows a good inter-day robustness (CV = 26 ± 12%). Several lipids could reliably distinguish necrotic and tumor regions across the technical replicates. Moreover, this protocol identified distinct alterations in the tissue lipidome of xenograft treated with glutaminase inhibitors. In conclusion, lipidic alterations in FFPE tissue of breast cancer xenograft observed in this study are a step-forward to a robust and reproducible MALDI-MSI based workflow for pre-clinical and clinical applications.

6.
Cancer Metab ; 9(1): 9, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514438

RESUMO

BACKGROUND: Prostate cancer tissues are inherently heterogeneous, which presents a challenge for metabolic profiling using traditional bulk analysis methods that produce an averaged profile. The aim of this study was therefore to spatially detect metabolites and lipids on prostate tissue sections by using mass spectrometry imaging (MSI), a method that facilitates molecular imaging of heterogeneous tissue sections, which can subsequently be related to the histology of the same section. METHODS: Here, we simultaneously obtained metabolic and lipidomic profiles in different prostate tissue types using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MSI. Both positive and negative ion mode were applied to analyze consecutive sections from 45 fresh-frozen human prostate tissue samples (N = 15 patients). Mass identification was performed with tandem MS. RESULTS: Pairwise comparisons of cancer, non-cancer epithelium, and stroma revealed several metabolic differences between the tissue types. We detected increased levels of metabolites crucial for lipid metabolism in cancer, including metabolites involved in the carnitine shuttle, which facilitates fatty acid oxidation, and building blocks needed for lipid synthesis. Metabolites associated with healthy prostate functions, including citrate, aspartate, zinc, and spermine had lower levels in cancer compared to non-cancer epithelium. Profiling of stroma revealed higher levels of important energy metabolites, such as ADP, ATP, and glucose, and higher levels of the antioxidant taurine compared to cancer and non-cancer epithelium. CONCLUSIONS: This study shows that specific tissue compartments within prostate cancer samples have distinct metabolic profiles and pinpoint the advantage of methodology providing spatial information compared to bulk analysis. We identified several differential metabolites and lipids that have potential to be developed further as diagnostic and prognostic biomarkers for prostate cancer. Spatial and rapid detection of cancer-related analytes showcases MALDI-TOF MSI as a promising and innovative diagnostic tool for the clinic.

7.
Anal Chem ; 92(4): 3171-3179, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31944670

RESUMO

Levels of zinc, along with its mechanistically related metabolites citrate and aspartate, are widely reported as reduced in prostate cancer compared to healthy tissue and are therefore pointed out as potential cancer biomarkers. Previously, it has only been possible to analyze zinc and metabolites by separate detection methods. Through matrix-assisted laser desorption/ionization mass spectrometry imaging (MSI), we were for the first time able to demonstrate, in two different sample sets (n = 45 and n = 4), the simultaneous spatial detection of zinc, in the form of ZnCl3-, together with citrate, aspartate, and N-acetylaspartate on human prostate cancer tissues. The reliability of the ZnCl3- detection was validated by total zinc determination using laser ablation inductively coupled plasma MSI on adjacent serial tissue sections. Zinc, citrate, and aspartate were correlated with each other (range r = 0.46 to 0.74) and showed a significant reduction in cancer compared to non-cancer epithelium (p < 0.05, log2 fold change range: -0.423 to -0.987), while no significant difference between cancer and stroma tissue was found. Simultaneous spatial detection of zinc and its metabolites is not only a valuable tool for analyzing the role of zinc in prostate metabolism but might also provide a fast and simple method to detect zinc, citrate, and aspartate levels as a biomarker signature for prostate cancer diagnostics and prognostics.


Assuntos
Próstata/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Zinco/metabolismo , Ácido Aspártico/metabolismo , Citratos/metabolismo , Humanos , Masculino , Próstata/citologia , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fatores de Tempo
8.
Sci Rep ; 8(1): 14269, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250137

RESUMO

Reactive stroma is a tissue feature commonly observed in the tumor microenvironment of prostate cancer and has previously been associated with more aggressive tumors. The aim of this study was to detect differentially expressed genes and metabolites according to reactive stroma content measured on the exact same prostate cancer tissue sample. Reactive stroma was evaluated using histopathology from 108 fresh frozen prostate cancer samples gathered from 43 patients after prostatectomy (Biobank1). A subset of the samples was analyzed both for metabolic (n = 85) and transcriptomic alterations (n = 78) using high resolution magic angle spinning magnetic resonance spectroscopy (HR-MAS MRS) and RNA microarray, respectively. Recurrence-free survival was assessed in patients with clinical follow-up of minimum five years (n = 38) using biochemical recurrence (BCR) as endpoint. Multivariate metabolomics and gene expression analysis compared low (≤15%) against high reactive stroma content (≥16%). High reactive stroma content was associated with BCR in prostate cancer patients even when accounting for the influence of Grade Group (Cox hazard proportional analysis, p = 0.013). In samples with high reactive stroma content, metabolites and genes linked to immune functions and extracellular matrix (ECM) remodeling were significantly upregulated. Future validation of these findings is important to reveal novel biomarkers and drug targets connected to immune mechanisms and ECM in prostate cancer. The fact that high reactive stroma grading is connected to BCR adds further support for the clinical integration of this histopathological evaluation.


Assuntos
Biomarcadores Tumorais/genética , Metaboloma/genética , Neoplasias da Próstata/genética , Transcriptoma/genética , Idoso , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Células Estromais/metabolismo , Microambiente Tumoral/genética
9.
Methods Mol Biol ; 1786: 237-257, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29786797

RESUMO

Prostate cancer is the second most common malignancy, and the fifth leading cause of cancer-related death among men, worldwide. A major unsolved clinical challenge in prostate cancer is the ability to accurately distinguish indolent cancer types from the aggressive ones. Reprogramming of metabolism is now a widely accepted hallmark of cancer development, where cancer cells must be able to convert nutrients to biomass while maintaining energy production. Metabolomics is the large-scale study of small molecules, commonly known as metabolites, within cells, biofluids, tissues, or organisms. Nuclear magnetic resonance (NMR) spectroscopy is commonly applied in metabolomics studies of cancer. This chapter provides protocols for NMR-based metabolomics of cell cultures, biofluids (serum and urine), and intact tissue, with concurrent advice for optimal biobanking and sample preparation procedures.


Assuntos
Espectroscopia de Ressonância Magnética , Metaboloma , Metabolômica , Neoplasias da Próstata/metabolismo , Biomarcadores , Líquidos Corporais/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Metabolômica/métodos , Análise Serial de Tecidos/métodos
10.
BMC Cancer ; 18(1): 478, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703166

RESUMO

BACKGROUND: The relationship between cholesterol and prostate cancer has been extensively studied for decades, where high levels of cellular cholesterol are generally associated with cancer progression and less favorable outcomes. However, the role of in vivo cellular cholesterol synthesis in this process is unclear, and data on the transcriptional activity of cholesterol synthesis pathway genes in tissue from prostate cancer patients are inconsistent. METHODS: A common problem with cancer tissue data from patient cohorts is the presence of heterogeneous tissue which confounds molecular analysis of the samples. In this study we present a general method to minimize systematic confounding from stroma tissue in any prostate cancer cohort comparing prostate cancer and normal samples. In particular we use samples assessed by histopathology to identify genes enriched and depleted in prostate stroma. These genes are then used to assess stroma content in tissue samples from other prostate cancer cohorts where no histopathology is available. Differential expression analysis is performed by comparing cancer and normal samples where the average stroma content has been balanced between the sample groups. In total we analyzed seven patient cohorts with prostate cancer consisting of 1713 prostate cancer and 230 normal tissue samples. RESULTS: When stroma confounding was minimized, differential gene expression analysis over all cohorts showed robust and consistent downregulation of nearly all genes in the cholesterol synthesis pathway. Additional Gene Ontology analysis also identified cholesterol synthesis as the most significantly altered metabolic pathway in prostate cancer at the transcriptional level. CONCLUSION: The surprising observation that cholesterol synthesis genes are downregulated in prostate cancer is important for our understanding of how prostate cancer cells regulate cholesterol levels in vivo. Moreover, we show that tissue heterogeneity explains the lack of consistency in previous expression analysis of cholesterol synthesis genes in prostate cancer.


Assuntos
Colesterol/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Metabolismo dos Lipídeos/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Vias Biossintéticas/genética , Estudos de Coortes , Regulação para Baixo , Humanos , Masculino , Modelos Biológicos , Neoplasias da Próstata/patologia , Reprodutibilidade dos Testes , Células Estromais/metabolismo , Células Estromais/patologia , Transcrição Gênica
11.
Sci Rep ; 7(1): 14276, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079735

RESUMO

Increased knowledge of the molecular differences between indolent and aggressive prostate cancer is needed for improved risk stratification and treatment selection. Secreted frizzled-related protein 4 (SFRP4) is a modulator of the cancer-associated Wnt pathway, and previously suggested as a potential marker for prostate cancer aggressiveness. In this study, we investigated and validated the association between SFRP4 gene expression and aggressiveness in nine independent cohorts (n = 2157). By differential expression and combined meta-analysis of all cohorts, we detected significantly higher SFRP4 expression in cancer compared with normal samples, and in high (3-5) compared with low (1-2) Grade Group samples. SFRP4 expression was a significant predictor of biochemical recurrence in six of seven cohorts and in the overall analysis, and was a significant predictor of metastatic event in one cohort. In our study cohort, where metabolic information was available, SFRP4 expression correlated significantly with the concentrations of citrate and spermine, two previously suggested biomarkers for aggressive prostate cancer. SFRP4 immunohistochemistry in an independent cohort (n = 33) was not associated with aggressiveness. To conclude, high SFRP4 gene expression is associated with high Grade Group and recurrent prostate cancer after surgery. Future studies investigating the mechanistic and clinical usefulness of SFRP4 in prostate cancer are warranted.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas/metabolismo , Adulto , Idoso , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA