RESUMO
Chronic kidney disease mineral and bone disorder (CKD-MBD) contributes substantially to the burden of cardiovascular disease and fractures in patients with CKD. An increasing arsenal of diagnostic tools, including bone turnover markers and bone imaging, is available to support clinicians in the management of CKD-associated osteoporosis. Although not mandatory, a bone biopsy remains useful in the diagnostic workup of complex cases. In this special report, the European Renal Osteodystrophy (EUROD) initiative introduces the concept of a kidney-bone multidisciplinary team (MDT) for the diagnosis and clinical management of challenging cases of CKD-associated osteoporosis. In 2021, the EUROD initiative launched virtual clinical-pathological case-conferences to discuss challenging cases of patients with CKD-associated osteoporosis, in whom a bone biopsy was useful in the diagnostic workup. Out of these, we selected 4 representative cases and asked a kidney-bone MDT consisting of a nephrologist, an endocrinologist and a rheumatologist to provide comments on the diagnostic and therapeutic choices. These cases covered a broad spectrum of CKD-associated osteoporosis, including bone fracture in CKDG5D, post-transplant bone disease, disturbed bone mineralization, severely suppressed bone turnover, and severe hyperparathyroidism. Comments from the MDT were, in most cases, complementary to each other and additive to the presented approach in the cases. The MDT approach may thus set the stage for improved diagnostics and tailored therapies in the field of CKD-associated osteoporosis. We demonstrate the clinical utility of a kidney-bone MDT for the management of patients with CKD-MBD and recommend their establishment at local, national, and international levels.
RESUMO
In this forensic case report, we present autopsy findings from a young male in his thirties who had been self-injecting paraffin oil into his upper extremities 8 years prior to death. The injections induced an inflammatory response, leading to granuloma formation. This, in turn, resulted in severe hypercalcemia. The external autopsy examination revealed gross macroscopic ulcerations and enlargement of upper extremities, while calcifications of ligaments, heart, kidneys and dura mater was revealed on postmortem CT-scans. Histopathological examination showed extensive multiorgan metastatic calcifications in several tissues including the lungs, heart and kidney. Cause of death was estimated to be the extensive calcific deposits in the heart likely resulting in cardiac arrest. To our knowledge this is the first case reporting findings from an autopsy in which the cause of death was linked to cosmetic oil injections.
RESUMO
Osteolytic bone disease is present in about 80% of patients with multiple myeloma at the time of diagnosis. Managing bone disease in patients with multiple myeloma is a challenge and requires a multi-faceted treatment approach with medication, surgery, and radiation. The established treatments with intravenous or subcutaneous antiresorptives can cause debilitating adverse events for patients, mainly osteonecrosis of the jaw, which, traditionally, has been difficult to manage. Now, oral surgery is recommended and proven successful in 60-85% of patients. Patients with spinal involvement may benefit from surgery in the form of vertebroplasty and kyphoplasty for pain relief, improved mobility, and reestablished sagittal balance, as well as the restoration of vertebral height. These procedures are considered safe, but the full therapeutic impact needs to be investigated further. Ixazomib, the first oral proteasome inhibitor, increases osteoblast differentiation, and recently published preliminary results in patients treated with Ixazomib maintenance have promisingly shown increased trabecular volume caused by prolonged bone formation activity. Other novel potential treatment strategies are discussed as well.
RESUMO
In hypoparathyroidism, lack of parathyroid hormone (PTH) leads to low calcium levels and decreased bone remodeling. Treatment with recombinant human PTH (rhPTH) may normalize bone turnover. This study aimed to investigate whether rhPTH(1-84) continued to activate intracortical bone remodeling after 30 months and promoted the transition from erosion to formation and whether this effect was transitory when rhPTH(1-84) was discontinued. Cortical histomorphometry was performed on 60 bone biopsies from patients (aged 31 to 78 years) with chronic hypoparathyroidism randomized to either 100 µg rhPTH(1-84) a day (n = 21) (PTH) or similar placebo (n = 21) (PLB) for 6 months as add-on to conventional therapy. This was followed by an open-label extension, where patients extended their rhPTH(1-84) (PTH) (n = 5), continued conventional treatment (CON) (n = 5), or withdrew from rhPTH(1-84) and resumed conventional therapy (PTHw) for an additional 24 months (n = 8). Bone biopsies were collected at months 6 (n = 42) and 30 (n = 18). After 6 and 30 months, the overall cortical microarchitecture (cortical porosity, thickness, pore density, and mean pore diameter) in the PTH group did not differ from that of the PLB/CON and PTHw groups. Still, the PTH group had a significantly and persistently higher percentage of pores undergoing remodeling than the PLB/CON groups. A significantly higher percentage of these pores was undergoing bone formation in the PTH compared with the PLB/CON groups, whereas the percentage of pores with erosion only was not different. This resulted in a shift in the ratio between formative and eroded pores, reflecting a faster transition from erosion to formation in the PTH-treated patients. In the rhPTH(1-84) withdrawal group PTHw, the latter effects of PTH were completely reversed in comparison to those of the PLB/CON groups. In conclusion, rhPTH(1-84) replacement therapy in hypoparathyroidism patients promotes intracortical remodeling and its transition from erosion to formation without affecting the overall cortical microstructure. The effect persists for at least 30 months and is reversible when treatment is withdrawn. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
RESUMO
BACKGROUND: Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein not previously described in the human central nervous system (CNS). OBJECTIVES: We determined MFAP4 CNS expression and measured cerebrospinal fluid (CSF) and serum levels. METHODS: Tissue was sampled at autopsy from patients with acute multiple sclerosis (MS) (n = 3), progressive MS (n = 3), neuromyelitis optica spectrum disorder (NMOSD) (n = 2), and controls (n = 9), including 6 healthy controls (HC). MFAP4 levels were measured in 152 patients: 49 MS, 62 NMOSD, 22 myelin oligodendrocyte glycoprotein-associated disease (MOGAD), and 19 isolated optic neuritis (ION). RESULTS: MFAP4 localized to meninges and vascular/perivascular spaces, intense in the optic nerve. At sites of active inflammation, MFAP4 reactivity was reduced in NMOSD and acute MS and less in progressive MS. CSF MFAP4 levels were reduced during relapse and at the onset of diseases (mean U/mL: MS 14.3, MOGAD 9.7, and ION 14.6 relative to HC 17.9. (p = 0.013, p = 0.000, and p = 0.019, respectively). Patients with acute ON (n = 68) had reduced CSF MFAP4 (mean U/mL: 14.5, p = 0.006). CSF MFAP4 levels correlated negatively with relapse severity (rho = -0.41, p = 0.017). CONCLUSION: MFAP4 immunoreactivity was reduced at sites of active inflammation. CSF levels of MFAP4 were reduced following relapse and may reflect disease activity.
Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Neuromielite Óptica , Humanos , Glicoproteína Mielina-Oligodendrócito , Neuromielite Óptica/líquido cefalorraquidiano , Sistema Nervoso Central , Inflamação , Autoanticorpos , Aquaporina 4/líquido cefalorraquidiano , Proteínas de Transporte , Glicoproteínas , Proteínas da Matriz ExtracelularRESUMO
BACKGROUND: Recruitment and proliferation of osteoprogenitors during the reversal-resorption phase, and their differentiation into mature bone-forming osteoblasts is crucial for initiation of bone formation during bone remodeling. This study investigates the osteoprogenitors' gradual recruitment, proliferation, and differentiation into bone-forming osteoblasts within intracortical remodeling events of healthy adolescent humans. METHODS: The study was conducted on cortical bone specimens from 11 adolescent human controls - patients undergoing surgery due to coxa valga. The osteoprogenitor recruitment route and differentiation into osteoblasts were backtracked using immunostainings and in situ hybridizations with osteoblastic markers (CD271/NGFR, osterix/SP7, COL3A1 and COL1A1). The osteoblastic cell populations were defined based on the pore surfaces, and their proliferation index (Ki67), density and number/circumference were estimated in multiplex-immunofluorescence (Ki67, TRAcP, CD34) stained sections. RESULTS: During the reversal-resorption phase, osteoclasts are intermixed with (COL3A1+NFGR+) osteoblastic reversal cells, which are considered to be osteoprogenitors of (COL1A1+SP7+) bone-forming osteoblasts. Initiation of bone formation requires a critical density of these osteoprogenitors (43 ± 9 cells/mm), which is reached though proliferation (4.4 ± 0.5 % proliferative) and even more so through recruitment of osteoprogenitors, but challenged by the ongoing expansion of the canal circumference. These osteoprogenitors most likely originate from osteoblastic bone lining cells and mainly lumen osteoprogenitors, which expand their population though proliferation (4.6 ± 0.3 %) and vascular recruitment. These lumen osteoprogenitors resemble canopy cells above trabecular remodeling sites, and like canopy cells they extend above bone-forming osteoblasts where they may rejuvenate the osteoblast population during bone formation. CONCLUSION: Initiation of bone formation during intracortical remodeling requires a critical density of osteoprogenitors on eroded surfaces, which is reached though proliferation and recruitment of local osteoprogenitors: bone lining cells and lumen osteoprogenitors.
RESUMO
Background: Denosumab, is a potent anti-resorptive that, increases bone mineral density, and reduces fracture risk in osteoporotic patients. However, several case studies have reported multiple vertebral fractures in patients discontinuing denosumab. Case presentation: This case report describes a 64-year-old female with postmenopausal osteoporosis treated with denosumab, who had her 11th injection delayed by 4 months. The patient suffered eight spontaneous vertebral fractures. After consent, an iliac crest bone biopsy was obtained following re-initiation of the denosumab treatment and analyzed by micro-computed tomography and histomorphometry. Results: micro-computed tomography analysis revealed a low trabecular bone volume of 10 %, a low trabecular thickness of 97 µm, a low trabecular spacing of 546 µm, a high trabecular number of 1.8/mm, and a high structure model index of 2.2, suggesting trabecular thinning and loss of trabecular plates. Histomorphometric trabecular bone analysis revealed an eroded perimeter per bone perimeter of 33 % and an osteoid perimeter per bone perimeter of 62 %. Importantly, 88 % of the osteoid perimeter was immediately above an eroded-scalloped cement line with no sign of mineralization, and often with no clear bone-forming osteoblasts on the surface. Moreover, only 5 % of the bone perimeter was mineralizing, reflecting that only 8 % of the osteoid perimeter underwent mineralization, resulting in a mineralization lag time of 545 days. Taken together, this indicates limited bone formation and delayed mineralization. Conclusion: We present a case report of multiple vertebral fractures after denosumab discontinuation with histomorphometric evidence that denosumab discontinuation leads to extensive trabecular bone resorption followed by a limited bone formation and delayed mineralization if the denosumab treatment is reinitiated. This highlights the importance of developing optimal discontinuation strategies for patients that are to discontinue treatment.
RESUMO
Although failure to establish a vascular network has been associated with many skeletal disorders, little is known about what drives development of vasculature in the intracortical bone compartments. Here, we show that intracortical bone resorption events are coordinated with development of the vasculature. We investigated the prevalence of vascular structures at different remodeling stages as well as their 3D organization using proximal femoral cortical bone from 5 girls and 6 boys (aged 6-15 years). A 2D analysis revealed that non-quiescent intracortical pores contained more vascular structures than quiescent pores (p < 0.0001). Type 2 pores, i.e., remodeling of existing pores, had a higher density of vascular structures than type 1 pores, i.e., de novo created pores (p < 0.05). Furthermore, pores at the eroded-formative remodeling stage, had more vascular structures than pores at any other remodeling stage (p < 0.05). A 3D reconstruction of an intracortical remodeling event showed that osteoclasts in the advancing tip of the cutting cone as well as preosteoclasts in the lumen expressed vascular endothelial growth factor-A (VEGFA), while VEGFA-receptors 1 and 2 mainly were expressed in endothelial cells in the adjacent vasculature. Consequently, we propose that the progression of the vascular network in intracortical remodeling events is driven by osteoclasts expressing VEGFA. Moreover, the vasculature is continuously reconfigured according to the demands of the remodeling events at the surrounding bone surfaces.
Assuntos
Reabsorção Óssea , Fator A de Crescimento do Endotélio Vascular , Masculino , Feminino , Humanos , Células Endoteliais , Remodelação Óssea , Osso e OssosRESUMO
Proper bone remodeling depends not only on a team of bone-resorbing osteoclasts and bone-forming osteoblasts. It also depends on the site-specific delivery of a large amount of osteoblast lineage cells to the bone remodeling site. How this delivery occurs is poorly known. Here, we gained insight into this mechanism by analyzing the distribution of markers of osteoblastogenesis on bone surfaces and in their bone marrow neighborhood in human cancellous bone. We found a CD271-positive/PDGFß-R-positive cell layer surrounding the bone marrow that provides osteoblastogenic potential along all bone surfaces, whether quiescent or remodeling. This bone marrow envelope cell layer takes the appearance of a canopy above remodeling sites, where it then also shows an upregulation of the proliferation marker Ki67, smooth muscle actin (SMA), tenascin C, fibronectin, and MMP13. This indicates that the canopy is a region of the bone marrow envelope where early markers of osteoblastogenesis are activated concurrently with initiation of bone remodeling. Importantly, the high proliferation index in the canopy is not associated with increasing cell densities at the canopy level, but it is at the bone surface level, thereby supporting delivery of cells from the canopy to the bone surface. This delivery route explains why lack of canopies was previously found to coincide with lack of bone formation, and fits current knowledge on the canopies as a target for regulators of bone remodeling. We conclude that the coordination of bone marrow envelope activities and bone surface activities allows integrating osteoblastogenesis and bone remodeling into the same functional unit, and propose that the bone marrow envelope is critical for preserving bone health. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Assuntos
Medula Óssea , Remodelação Óssea , Humanos , Remodelação Óssea/fisiologia , Osso e Ossos , Osteoclastos/metabolismo , Osteoblastos/metabolismo , OsteogêneseRESUMO
Upon transplantation, skeletal stem cells (also known as bone marrow stromal or mesenchymal stem cells) can regulate bone regeneration by producing secreted factors. Here, we identify KIAA1199 as a bone marrow stromal cell-secreted factor in vitro and in vivo. KIAA1199 plasma levels of patients positively correlate with osteoporotic fracture risk and expression levels of KIAA1199 in patient bone marrow stromal cells negatively correlates with their osteogenic differentiation potential. KIAA1199-deficient bone marrow stromal cells exhibit enhanced osteoblast differentiation in vitro and ectopic bone formation in vivo. Consistently, KIAA1199 knockout mice display increased bone mass and biomechanical strength, as well as an increased bone formation rate. They also exhibit accelerated healing of surgically generated bone defects and are protected from ovariectomy-induced bone loss. Mechanistically, KIAA1199 regulates osteogenesis by inhibiting the production of osteopontin by osteoblasts, via integrin-mediated AKT and ERK-MAPK intracellular signaling. Thus, KIAA1199 is a regulator of osteoblast differentiation and bone regeneration and could be targeted for the treatment or management of low bone mass conditions.
Assuntos
Hialuronoglucosaminidase , Células-Tronco Mesenquimais , Osteoblastos , Osteogênese , Animais , Feminino , Camundongos , Regeneração Óssea/genética , Diferenciação Celular , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Hialuronoglucosaminidase/genética , Camundongos KnockoutRESUMO
Whole-exome sequencing of two patients with idiopathic complex neurodevelopmental disorder (NDD) identified biallelic variants of unknown significance within FIBCD1, encoding an endocytic acetyl group-binding transmembrane receptor with no known function in the central nervous system. We found that FIBCD1 preferentially binds and endocytoses glycosaminoglycan (GAG) chondroitin sulphate-4S (CS-4S) and regulates GAG content of the brain extracellular matrix (ECM). In silico molecular simulation studies and GAG binding analyses of patient variants determined that such variants are loss-of-function by disrupting FIBCD1-CS-4S association. Gene knockdown in flies resulted in morphological disruption of the neuromuscular junction and motor-related behavioural deficits. In humans and mice, FIBCD1 is expressed in discrete brain regions, including the hippocampus. Fibcd1 KO mice exhibited normal hippocampal neuronal morphology but impaired hippocampal-dependent learning. Further, hippocampal synaptic remodelling in acute slices from Fibcd1 KO mice was deficient but restored upon enzymatically modulating the ECM. Together, we identified FIBCD1 as an endocytic receptor for GAGs in the brain ECM and a novel gene associated with an NDD, revealing a critical role in nervous system structure, function and plasticity.
Assuntos
Transtornos do Neurodesenvolvimento , Receptores de Superfície Celular , Animais , Humanos , Camundongos , Endocitose , Matriz Extracelular/metabolismo , Transtornos do Neurodesenvolvimento/genética , Receptores de Superfície Celular/metabolismoRESUMO
Bone tissue is continuously remodeled. In trabecular bone, each remodeling transaction forms a microscopic bone structural unit (BSU), also known as a hemiosteon or a trabecular packet, which is bonded to existing tissue by osteopontin-rich cement lines. The size and shape of the BSUs are determined by the size and shape of the resorption cavity, and whether the cavity is potentially over- or under-filled by the subsequent bone formation. The present study focuses on the recently formed trabecular BSUs, and how their 2D size and shape changes with age and trabecular microstructure. The study was performed using osteopontin-immunostained frontal sections of L2 vertebrae from 8 young (aged 18.5-37.6 years) and 8 old (aged 69.1-96.4 years) control females, which underwent microcomputed tomography (µCT) imaging prior to sectioning. The contour of 4230 BSU profiles (181-385 per vertebra) within 1024 trabecular profiles were outlined, and their 2D width, length, area, and shape were assessed. Of these BSUs, 22 (0.5%) were generated by modeling-based bone formation (i.e. without prior resorption), while 99.5% were generated by remodeling-based bone formation (i.e. with prior resorption). The distributions of BSU profile width, length, and area were significantly smaller in the old versus young females (p < 0.005), and the median profile width, length, and area were negative correlated with age (p < 0.018). Importantly, these BSU profile size parameters were more strongly correlated with trabecular bone volume (BV/TV, p < 0.002) and structure model index (SMI, p < 0.008) assessed by µCT, than age. Moreover, the 2D BSU size parameters were positively correlated to the area of the individual trabecular profiles (p < 0.0001), which were significantly smaller in the old versus young females (p < 0.024). The BSU shape parameters (aspect ratio, circularity, and solidity) were not correlated with age, BV/TV, or SMI. Collectively, the study supports the notion that not only the BSU profile width, but also its length and area, are more influenced by the age-related bone loss and shift from plates to rods (SMI), than age itself. This implies that BSU profile size is mainly driven by changes in the trabecular microstructure, which affect the size of the resorption cavity that the BSU refills.
Assuntos
Osteopontina , Osteoporose , Densidade Óssea , Osso Esponjoso/diagnóstico por imagem , Feminino , Humanos , Vértebras Lombares/ultraestrutura , Microtomografia por Raio-XRESUMO
Over the last two decades, increased interest of scientists to study bone marrow adiposity (BMA) in relation to bone and adipose tissue physiology has expanded the number of publications using different sources of bone marrow adipose tissue (BMAT). However, each source of BMAT has its limitations in the number of downstream analyses for which it can be used. Based on this increased scientific demand, the International Bone Marrow Adiposity Society (BMAS) established a Biobanking Working Group to identify the challenges of biobanking for human BMA-related samples and to develop guidelines to advance establishment of biobanks for BMA research. BMA is a young, growing field with increased interest among many diverse scientific communities. These bring new perspectives and important biological questions on how to improve and build an international community with biobank databases that can be used and shared all over the world. However, to create internationally accessible biobanks, several practical and legislative issues must be addressed to create a general ethical protocol used in all institutes, to allow for exchange of biological material internationally. In this position paper, the BMAS Biobanking Working Group describes similarities and differences of patient information (PIF) and consent forms from different institutes and addresses a possibility to create uniform documents for BMA biobanking purposes. Further, based on discussion among Working Group members, we report an overview of the current isolation protocols for human bone marrow adipocytes (BMAds) and bone marrow stromal cells (BMSCs, formerly mesenchymal), highlighting the specific points crucial for effective isolation. Although we remain far from a unified BMAd isolation protocol and PIF, we have summarized all of these important aspects, which are needed to build a BMA biobank. In conclusion, we believe that harmonizing isolation protocols and PIF globally will help to build international collaborations and improve the quality and interpretation of BMA research outcomes.
Assuntos
Tecido Adiposo , Medula Óssea , Bancos de Tecidos/organização & administração , Adiposidade , Bancos de Espécimes Biológicos , HumanosRESUMO
With increasing age of the population, countries across the globe are facing a substantial increase in osteoporotic fractures. Genetic association signals for fractures have been reported at the RSPO3 locus, but the causal gene and the underlying mechanism are unknown. Here we show that the fracture reducing allele at the RSPO3 locus associate with increased RSPO3 expression both at the mRNA and protein levels, increased trabecular bone mineral density and reduced risk mainly of distal forearm fractures in humans. We also demonstrate that RSPO3 is expressed in osteoprogenitor cells and osteoblasts and that osteoblast-derived RSPO3 is the principal source of RSPO3 in bone and an important regulator of vertebral trabecular bone mass and bone strength in adult mice. Mechanistic studies revealed that RSPO3 in a cell-autonomous manner increases osteoblast proliferation and differentiation. In conclusion, RSPO3 regulates vertebral trabecular bone mass and bone strength in mice and fracture risk in humans.
Assuntos
Osso Esponjoso/metabolismo , Fraturas Ósseas/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Trombospondinas/genética , Animais , Densidade Óssea , Osso Esponjoso/lesões , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Humanos , Análise da Randomização Mendeliana/métodos , Camundongos Knockout , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Fatores de Risco , Trombospondinas/deficiênciaRESUMO
Dormancy of hematopoietic stem cells and formation of progenitors are directed by signals that come from the bone marrow microenvironment. Considerable knowledge has been gained on the murine hematopoietic stem cell microenvironment, while less so on the murine progenitor microenvironment and even less so on these microenvironments in humans. Characterization of these microenvironments is decisive for understanding hematopoiesis and finding new treatment modalities against bone marrow malignancies in the clinic. However, it is equally challenging, because hematopoietic stem cells are difficult to detect in the complex bone marrow landscape. In the present study we are characterizing the human hematopoietic stem cell and progenitor microenvironment. We obtained three adjacent bone marrow sections from ten healthy volunteers. One was used to identify a population of CD34+/CD38- "hematopoietic stem cells and multipotent progenitors" and a population of CD34+/CD38+ "progenitors" based on immunofluorescence pattern/intensity and cellular morphology. The other two were immunostained respectively for CD34/CD56 and for CD34/SMA. Using the combined information we performed a non-computer-assisted quantification of nine bone marrow components (adipocytes, megakaryocytes, bone surfaces, four different vessel types (arteries, capillaries, sinusoids and collecting sinuses), other "hematopoietic stem cells and multipotent progenitors" and other "progenitors") within 30 µm of "hematopoietic stem cells and multipotent progenitors", "progenitors", and "random cell profiles". We show that the microenvironment of the "hematopoietic stem cells and multipotent progenitors" is significantly enriched in sinusoids and megakaryocytes, while the microenvironment of the "progenitors" is significantly enriched in capillaries, other "progenitors", bone surfaces and arteries.
Assuntos
Células da Medula Óssea/citologia , Células-Tronco Hematopoéticas/citologia , Nicho de Células-Tronco/fisiologia , Adipócitos , Adulto , Idoso , Antígenos CD34 , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Diferenciação Celular , Separação Celular , Células Cultivadas , Feminino , Citometria de Fluxo , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Imunofenotipagem , Megacariócitos , Glicoproteínas de Membrana , Pessoa de Meia-IdadeRESUMO
The current models of osteoclastic bone resorption focus on immobile osteoclasts sitting on the bone surface and drilling a pit into the bone matrix. It recently appeared that many osteoclasts also enlarge their pit by moving across the bone surface while resorbing. Drilling a pit thus represents only the start of a resorption event of much larger amplitude. This prolonged resorption activity significantly contributes to pathological bone destruction, but the mechanism whereby the osteoclast engages in this process does not have an answer within the standard bone resorption models. Herein, we review observations that lead to envision how prolonged resorption is possible through simultaneous resorption and migration. According to the standard pit model, the "sealing zone" which surrounds the ruffled border (i.e., the actual resorption apparatus), "anchors" the ruffled border against the bone surface to be resorbed. Herein, we highlight that continuation of resorption demands that the sealing zone "glides" inside the cavity. Thereby, the sealing zone emerges as the structure responsible for orienting and displacing the ruffled border, e.g., directing resorption against the cavity wall. Importantly, sealing zone displacement stringently requires thorough collagen removal from the cavity wall - which renders strong cathepsin K collagenolysis indispensable for engagement of osteoclasts in cavity-enlargement. Furthermore, the sealing zone is associated with generation of new ruffled border at the leading edge, thereby allowing the ruffled border to move ahead. The sealing zone and ruffled border displacements are coordinated with the migration of the cell body, shown to be under control of lamellipodia at the leading edge and of the release of resorption products at the rear. We propose that bone resorption demands more attention to osteoclastic models integrating resorption and migration activities into just one cell phenotype.
RESUMO
Bisphosphonates are widely used anti-osteoporotic drugs targeting osteoclasts. They strongly inhibit bone resorption, but also strongly reduce bone formation. This reduced formation is commonly ascribed to the mechanism maintaining the resorption/formation balance during remodeling. The present study provides evidence for an additional mechanism where bisphosphonates actually impair the onset of bone formation after resorption. The evidence is based on morphometric parameters recently developed to assess the activities reversing resorption to formation. Herein, we compare these parameters in cancellous bone of alendronate- and placebo-treated postmenopausal osteoporotic patients. Alendronate increases the prevalence of eroded surfaces characterized by reversal cells/osteoprogenitors at low cell density and remote from active bone surfaces. This indicates deficient cell expansion on eroded surfaces - an event that is indispensable to start formation. Furthermore, alendronate decreases the coverage of these eroded surfaces by remodeling compartment canopies, a putative source of reversal cells/osteoprogenitors. Finally, alendronate strongly decreases the activation frequency of bone formation, and decreases more the formative compared to the eroded surfaces. All these parameters correlate with each other. These observations lead to a model where bisphosphonates hamper the osteoprogenitor recruitment required to initiate bone formation. This effect results in a larger eroded surface, thereby explaining the well-known paradox that bisphosphonates strongly inhibit bone resorption without strongly decreasing eroded surfaces. The possible mechanism for hampered osteoprogenitor recruitment is discussed: bisphosphonates may decrease the release of osteogenic factors by the osteoclasts, and/or bisphosphonates released by osteoclasts may act directly on neighboring osteoprogenitor cells as reported in preclinical studies.
Assuntos
Reabsorção Óssea , Difosfonatos , Alendronato/farmacologia , Remodelação Óssea , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/tratamento farmacológico , Difosfonatos/farmacologia , Humanos , Osteoclastos , OsteogêneseRESUMO
Proper bone remodeling necessarily requires that osteoblasts reconstruct the bone that osteoclasts have resorbed. However, the cellular events connecting resorption to reconstruction have remained poorly known. The consequence is a fragmentary understanding of the remodeling cycle where only the resorption and formation steps are taken into account. New tools have recently made possible to elucidate how resorption shifts to formation, thereby allowing to comprehend the remodeling cycle as a whole. This new knowledge is reviewed herein. It shows how teams of osteoclasts and osteoblast lineage cells are progressively established and how they are subjected therein to reciprocal interactions. Contrary to the common view, osteoclasts and osteoprogenitors are intermingled on the eroded surfaces. The analysis of the resorption and cell population dynamics shows that osteoprogenitor cell expansion and resorption proceed as an integrated mechanism; that a threshold cell density of osteoprogenitors on the eroded surface is mandatory for onset of bone formation; that the cell initiating osteoprogenitor cell expansion is the osteoclast; and that the osteoclast therefore triggers putative osteoprogenitor reservoirs positioned at proximity of the eroded bone surface (bone lining cells, canopy cells, pericytes). The interplay between magnitude of resorption and rate of cell expansion governs how soon bone reconstruction is initiated and may determine uncoupling and permanent bone loss if a threshold cell density is not reached. The clinical perspectives opened by these findings are discussed.
Assuntos
Remodelação Óssea , Reabsorção Óssea , Osso e Ossos , Humanos , Osteoblastos , Osteoclastos , OsteogêneseRESUMO
The physiological functions of platelet-derived growth factor receptors (PDGFRs) α and ß in osteoblast biology and bone metabolism remain to be established. Here, we show that PDGFRA and PDGFRB genes are expressed by osteoblast-lineage canopy and reversal cells in close proximity to PDGFB-expressing osteoclasts within human trabecular bone remodeling units. We also report that, although removal of only one of the two PDGFRs in Osterix-positive cells does not affect bone phenotype, suppression of both PDGFRs in those osteoblast lineage cells increases trabecular bone volume in male mice as well as in female gonad-intact and ovariectomized mice. Furthermore, osteoblast lineage-specific suppression of PDGFRs reduces Csf1 expression, bone marrow level of macrophage colony-stimulating factor (M-CSF), number of osteoclasts, and, therefore, bone resorption, but does not change bone formation. Finally, abrogation of PDGFR signaling in osteoblasts blocks PDGF-induced ERK1/2-mediated Csf1 expression and M-CSF secretion in osteoblast cultures and calcitriol-mediated osteoclastogenesis in co-cultures. In conclusion, our results indicate that PDGFR signaling in osteoblast lineage cells controls bone resorption through ERK1/2-mediated Csf1 expression. © 2020 American Society for Bone and Mineral Research (ASBMR).
Assuntos
Reabsorção Óssea , Fator Estimulador de Colônias de Macrófagos , Animais , Diferenciação Celular , Feminino , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas , Regulação para CimaRESUMO
Bone remodeling consists of resorption by osteoclasts followed by formation by osteoblasts, and osteoclasts are a source of bone formation-stimulating factors. Here we utilize osteoclast ablation by denosumab (DMAb) and RNA-sequencing of bone biopsies from postmenopausal women to identify osteoclast-secreted factors suppressed by DMAb. Based on these analyses, LIF, CREG2, CST3, CCBE1, and DPP4 are likely osteoclast-derived coupling factors in humans. Given the role of Dipeptidyl Peptidase-4 (DPP4) in glucose homeostasis, we further demonstrate that DMAb-treated participants have a significant reduction in circulating DPP4 and increase in Glucagon-like peptide (GLP)-1 levels as compared to the placebo-treated group, and also that type 2 diabetic patients treated with DMAb show significant reductions in HbA1c as compared to patients treated either with bisphosphonates or calcium and vitamin D. Thus, our results identify several coupling factors in humans and uncover osteoclast-derived DPP4 as a potential link between bone remodeling and energy metabolism.