Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Gen Physiol ; 155(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37078900

RESUMO

NMDA-type ionotropic glutamate receptors are critical for normal brain function and are implicated in central nervous system disorders. Structure and function of NMDA receptors composed of GluN1 and GluN3 subunits are less understood compared to those composed of GluN1 and GluN2 subunits. GluN1/3 receptors display unusual activation properties in which binding of glycine to GluN1 elicits strong desensitization, while glycine binding to GluN3 alone is sufficient for activation. Here, we explore mechanisms by which GluN1-selective competitive antagonists, CGP-78608 and L-689,560, potentiate GluN1/3A and GluN1/3B receptors by preventing glycine binding to GluN1. We show that both CGP-78608 and L-689,560 prevent desensitization of GluN1/3 receptors, but CGP-78608-bound receptors display higher glycine potency and efficacy at GluN3 subunits compared to L-689,560-bound receptors. Furthermore, we demonstrate that L-689,560 is a potent antagonist of GluN1FA+TL/3A receptors, which are mutated to abolish glycine binding to GluN1, and that this inhibition is mediated by a non-competitive mechanism involving binding to the mutated GluN1 agonist binding domain (ABD) to negatively modulate glycine potency at GluN3A. Molecular dynamics simulations reveal that CGP-78608 and L-689,560 binding or mutations in the GluN1 glycine binding site promote distinct conformations of the GluN1 ABD, suggesting that the GluN1 ABD conformation influences agonist potency and efficacy at GluN3 subunits. These results uncover the mechanism that enables activation of native GluN1/3A receptors by application of glycine in the presence of CGP-78608, but not L-689,560, and demonstrate strong intra-subunit allosteric interactions in GluN1/3 receptors that may be relevant to neuronal signaling in brain function and disease.


Assuntos
Glicina , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Domínios Proteicos , Glicina/farmacologia , Sítios de Ligação
2.
Cell Tissue Res ; 376(1): 83-96, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30406824

RESUMO

FMRFamide-related proteins have been described in both vertebrate and invertebrate nervous systems and have been suggested to play important roles in a variety of physiological processes. One proposed function is the modulation of signal transduction in mechanosensory neurons and their associated behavioral pathways in the Central American wandering spider Cupiennius salei; however, little is known about the distribution and abundance of FMRFamide-related proteins (FaRPs) within this invertebrate system. We employ immunohistochemistry, Hoechst nuclear stain and confocal microscopy of serial sections to detect, characterize and quantify FMRFamide-like immunoreactive neurons throughout all ganglia of the spider brain and along leg muscle. Within the different ganglia, between 3.4 and 12.6% of neurons showed immunolabeling. Among the immunoreactive cells, weakly and strongly labeled neurons could be distinguished. Between 71.4 and 81.7% of labeled neurons showed weak labeling, with 18.3 to 28.6% displaying strong labeling intensity. Among the weakly labeled neurons were characteristic motor neurons that have previously been shown to express ɣ-aminobutyric acid or glutamate. Ultrastructural investigations of neuromuscular junctions revealed mixed presynaptic vesicle populations including large electron-dense vesicles characteristic of neuropeptides. Double labeling for glutamate and FaRPs indicated that a subpopulation of neurons may co-express both neuroactive compounds. Our findings suggest that FaRPs are expressed throughout all ganglia and that different neurons have different expression levels. We conclude that FaRPs are likely utilized as neuromodulators in roughly 8% of neurons in the spider nervous system and that the main transmitter in a subpopulation of these neurons is likely glutamate.


Assuntos
Encéfalo/metabolismo , FMRFamida/metabolismo , Gânglios dos Invertebrados/metabolismo , Neurônios/metabolismo , Aranhas/metabolismo , Animais , Feminino , Neurotransmissores/metabolismo
3.
Cell Tissue Res ; 370(1): 71-88, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28687927

RESUMO

The spider Cupiennius salei is a well-established model for investigating information processing in arthropod sensory systems. Immunohistochemistry has shown that several neurotransmitters exist in the C. salei nervous system, including GABA, glutamate, histamine, octopamine and FMRFamide, while electrophysiology has found functional roles for some of these transmitters. There is also evidence that acetylcholine (ACh) is present in some C. salei neurons but information about the distribution of cholinergic neurons in spider nervous systems is limited. Here, we identify C. salei genes that encode enzymes essential for cholinergic transmission: choline ACh transferase (ChAT) and vesicular ACh transporter (VAChT). We used in-situ hybridization with an mRNA probe for C. salei ChAT gene to locate somata of cholinergic neurons in the central nervous system and immunohistochemistry with antisera against ChAT and VAChT to locate these proteins in cholinergic neurons. All three markers labeled similar, mostly small neurons, plus a few mid-sized neurons, in most ganglia. In the subesophageal ganglia, labeled neurons are putative efferent, motor or interneurons but the largest motor and interneurons were unlabeled. Groups of anti-ChAT labeled small neurons also connect the optic neuropils in the spider protocerebrum. Differences in individual cell labeling intensities were common, suggesting a range of ACh expression levels. Double-labeling found a subpopulation of anti-VAChT-labeled central and mechanosensory neurons that were also immunoreactive to antiserum against FMRFamide-like peptides. Our findings suggest that ACh is an important neurotransmitter in the C. salei central and peripheral nervous systems.


Assuntos
Neurônios Colinérgicos/citologia , FMRFamida/análise , Células Receptoras Sensoriais/citologia , Aranhas/anatomia & histologia , Aranhas/citologia , Animais , Proteínas de Artrópodes/análise , Colina O-Acetiltransferase/análise , Feminino , Mecanotransdução Celular , Proteínas Vesiculares de Transporte de Acetilcolina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA