Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2546, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510286

RESUMO

Rhizoctonia solani causes damaging yield losses on most major food crops. R. solani isolates belonging to anastomosis group 8 (AG8) are soil-borne, root-infecting pathogens with a broad host range. AG8 isolates can cause disease on wheat, canola and legumes, however Arabidopsis thaliana is heretofore thought to possess non-host resistance as A. thaliana ecotypes, including the reference strain Col-0, are resistant to AG8 infection. Using a mitochondria-targeted redox sensor (mt-roGFP2) and cell death staining, we demonstrate that both AG8 and a host isolate (AG2-1) of R. solani are able to infect A. thaliana roots. Above ground tissue of A. thaliana was found to be resistant to AG8 but not AG2. Genetic analysis revealed that ethylene, jasmonate and PENETRATION2-mediated defense pathways work together to provide resistance to AG8 in the leaves which subsequently enable tolerance of root infections. Overall, we demonstrate a significant difference in defense capabilities of above and below ground tissue in providing resistance to R. solani AG8 in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , N-Glicosil Hidrolases/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Transdução de Sinais , Resistência à Doença , Interações Hospedeiro-Patógeno , Imuno-Histoquímica , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rhizoctonia , Estresse Fisiológico
2.
Funct Integr Genomics ; 19(5): 743-758, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31054140

RESUMO

Rhizoctonia solani AG1-IA is a soil-borne necrotrophic pathogen that causes devastating rice sheath blight disease in rice-growing regions worldwide. Sclerotia play an important role in the life cycle of R. solani AG1-IA. In this study, RNA sequencing was used to investigate the transcriptomic dynamics of sclerotial development (SD) of R. solani AG1-IA. Gene ontology and pathway enrichment analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to investigate the functions and pathways of differentially expressed genes (DEGs). Six cDNA libraries were generated, and more than 300 million clean reads were obtained and assembled into 15,100 unigenes. In total, 12,575 differentially expressed genes were identified and 34.62% (4353) were significantly differentially expressed with a FDR ≤ 0.01 and |log2Ratio| ≥ 1, which were enriched into eight profiles using Short Time-series Expression Miner. Furthermore, KEGG and gene ontology analyses suggest the DEGs were significantly enriched in several biological processes and pathways, including binding and catalytic functions, biosynthesis of ribosomes, and other biological functions. Further annotation of the DEGs using the Clusters of Orthologous Groups (COG) database found most DEGs were involved in amino acid transport and metabolism, as well as energy production and conversion. Furthermore, DEGs relevant to SD of R. solani AG1-IA were involved in secondary metabolite biosynthesis, melanin biosynthesis, ubiquitin processes, autophagy, and reactive oxygen species metabolism. The gene expression profiles of 10 randomly selected DEGs were validated by quantitative real-time reverse transcription PCR and were consistent with the dynamics in transcript abundance identified by RNA sequencing. The data provide a high-resolution map of gene expression during SD, a key process contributing to the pathogenicity of this devastating pathogen. In addition, this study provides a useful resource for further studies on the genomics of R. solani AG1-IA and other Rhizoctonia species.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Morfogênese/genética , Oryza/microbiologia , Doenças das Plantas/genética , Rhizoctonia/crescimento & desenvolvimento , Transcriptoma , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Genoma Fúngico , Doenças das Plantas/microbiologia , Rhizoctonia/genética , Rhizoctonia/patogenicidade
3.
Sci Rep ; 7(1): 10410, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874693

RESUMO

Rhizoctonia solani is a fungal pathogen causing substantial damage to many of the worlds' largest food crops including wheat, rice, maize and soybean. Despite impacting global food security, little is known about the pathogenicity mechanisms employed by R. solani. To enable prediction of effectors possessing either broad efficacy or host specificity, a combined secretome was constructed from a monocot specific isolate, a dicot specific isolate and broad host range isolate infecting both monocot and dicot hosts. Secretome analysis suggested R. solani employs largely different virulence mechanisms to well-studied pathogens, despite in many instances infecting the same host plants. Furthermore, the secretome of the broad host range AG8 isolate may be shaped by maintaining functions for saprophytic life stages while minimising opportunities for host plant recognition. Analysis of possible co-evolution with host plants and in-planta up-regulation in particular, aided identification of effectors including xylanase and inhibitor I9 domain containing proteins able to induce cell death in-planta. The inhibitor I9 domain was more abundant in the secretomes of a wide range of necrotising fungi relative to biotrophs. These findings provide novel targets for further dissection of the virulence mechanisms and potential avenues to control this under-characterised but important pathogen.


Assuntos
Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Metabolômica , Doenças das Plantas/microbiologia , Proteômica , Rhizoctonia/fisiologia , Morte Celular , Biologia Computacional/métodos , Proteínas Fúngicas , Metaboloma , Metabolômica/métodos , Fenótipo , Proteoma , Proteômica/métodos , Rhizoctonia/isolamento & purificação
4.
Mol Plant Microbe Interact ; 30(9): 691-700, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28510484

RESUMO

The root-infecting necrotrophic fungal pathogen Rhizoctoniasolani causes significant disease to all the world's major food crops. As a model for pathogenesis of legumes, we have examined the interaction of R. solani AG8 with Medicago truncatula. RNAseq analysis of the moderately resistant M. truncatula accession A17 and highly susceptible sickle (skl) mutant (defective in ethylene sensing) identified major early transcriptional reprogramming in A17. Responses specific to A17 included components of ethylene signaling, reactive oxygen species metabolism, and consistent upregulation of the isoflavonoid biosynthesis pathway. Mass spectrometry revealed accumulation of the isoflavonoid-related compounds liquiritigenin, formononetin, medicarpin, and biochanin A in A17. Overexpression of an isoflavone synthase in M. truncatula roots increased isoflavonoid accumulation and resistance to R. solani. Addition of exogenous medicarpin suggested this phytoalexin may be one of several isoflavonoids required to contribute to resistance to R. solani. Together, these results provide evidence for the role of ethylene-mediated accumulation of isoflavonoids during defense against root pathogens in legumes. The involvement of ethylene signaling and isoflavonoids in the regulation of both symbiont-legume and pathogen-legume interactions in the same tissue may suggest tight regulation of these responses are required in the root tissue.


Assuntos
Resistência à Doença , Etilenos/metabolismo , Isoflavonas/metabolismo , Medicago truncatula/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Rhizoctonia/fisiologia , Transdução de Sinais , Vias Biossintéticas/genética , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/imunologia , Medicago truncatula/metabolismo , Metaboloma/genética , Mutação/genética , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Rhizoctonia/crescimento & desenvolvimento , Transcrição Gênica
5.
Data Brief ; 8: 267-71, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27331100

RESUMO

Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato, legumes and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about how R. solani causes disease. The data described in this article is derived from applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Comparisons of the data for sample types in this set will be useful to identify metabolic pathway changes as the fungus switches from saprophytic to a pathogenic lifestyle or pathogenicity related proteins contributing to the ability to cause disease on wheat. The data set is deposited in the PRIDE archive under identifier PRIDE: PXD002806.

6.
PLoS One ; 11(3): e0152548, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27031952

RESUMO

Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS) production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT), 3,3'-diaminobenzidine (DAB) and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction.


Assuntos
Espécies Reativas de Oxigênio/metabolismo , Rhizoctonia/fisiologia , Triticum/genética , Peróxido de Hidrogênio/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/genética , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Triticum/metabolismo , Triticum/microbiologia
7.
BMC Genomics ; 17: 191, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26945779

RESUMO

BACKGROUND: Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. RESULTS: Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. CONCLUSIONS: We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host specificity. While the legume-infecting isolates didn't share large genomic regions of pathogenicity-related content, smaller regions and candidate effector proteins were highly conserved, suggesting that they may play specific roles in inducing disease on legume hosts.


Assuntos
Fabaceae/microbiologia , Fusarium/genética , Genoma Fúngico , Hibridização Genômica Comparativa , Sequência Conservada , DNA Fúngico/genética , Proteínas Fúngicas/genética , Fusarium/classificação , Especificidade de Hospedeiro , Anotação de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA
8.
Mol Cell Proteomics ; 15(4): 1188-203, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26811357

RESUMO

Rhizoctonia solaniis an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues, however, little is known about howR. solanicauses disease. This study capitalizes on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification. The majority of infection only proteins tested were confirmed to show transcript up-regulation during infection including a thaumatin which increased susceptibility toR. solaniwhen expressed inNicotiana benthamiana In addition, analysis of expression during infection of different plant hosts highlighted how the infection strategy of this broad host range pathogen can be adapted to the particular host being encountered. Data are available via ProteomeXchange with identifier PXD002806.


Assuntos
Proteômica/métodos , Rhizoctonia/patogenicidade , Triticum/microbiologia , Fatores de Virulência/metabolismo , Adaptação Fisiológica , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Espectrometria de Massas/métodos , Oxirredução , Doenças das Plantas/microbiologia , Rhizoctonia/metabolismo
9.
PLoS Genet ; 10(5): e1004281, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24810276

RESUMO

Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases spanning 197 phytopathogenic taxa and AG1-IA. We also observed SNP-level "hypermutation" of CpG dinucleotides to TpG between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the R. solani genome sequence may prove to be a useful resource in future comparative analysis of plant pathogens.


Assuntos
Genoma Fúngico , Rhizoctonia/genética , Ilhas de CpG , Haploidia , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Transcriptoma
10.
BMC Plant Biol ; 14: 68, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24649892

RESUMO

BACKGROUND: Phytophthora cinnamomi is a devastating pathogen worldwide and phosphite (Phi), an analogue of phosphate (Pi) is highly effective in the control of this pathogen. Phi also interferes with Pi starvation responses (PSR), of which auxin signalling is an integral component. In the current study, the involvement of Pi and the auxin signalling pathways in host and Phi-mediated resistance to P. cinnamomi was investigated by screening the Arabidopsis thaliana ecotype Col-0 and several mutants defective in PSR and the auxin response pathway for their susceptibility to this pathogen. The response to Phi treatment was also studied by monitoring its effect on Pi- and the auxin response pathways. RESULTS: Here we demonstrate that phr1-1 (phosphate starvation response 1), a mutant defective in response to Pi starvation was highly susceptible to P. cinnamomi compared to the parental background Col-0. Furthermore, the analysis of the Arabidopsis tir1-1 (transport inhibitor response 1) mutant, deficient in the auxin-stimulated SCF (Skp1 - Cullin - F-Box) ubiquitination pathway was also highly susceptible to P. cinnamomi and the susceptibility of the mutants rpn10 and pbe1 further supported a role for the 26S proteasome in resistance to P. cinnamomi. The role of auxin was also supported by a significant (P < 0.001) increase in susceptibility of blue lupin (Lupinus angustifolius) to P. cinnamomi following treatment with the inhibitor of auxin transport, TIBA (2,3,5-triiodobenzoic acid). Given the apparent involvement of auxin and PSR signalling in the resistance to P. cinnamomi, the possible involvement of these pathways in Phi mediated resistance was also investigated. Phi (especially at high concentrations) attenuates the response of some Pi starvation inducible genes such as AT4, AtACP5 and AtPT2 in Pi starved plants. However, Phi enhanced the transcript levels of PHR1 and the auxin responsive genes (AUX1, AXR1and AXR2), suppressed the primary root elongation, and increased root hair formation in plants with sufficient Pi. CONCLUSIONS: The auxin response pathway, particularly auxin sensitivity and transport, plays an important role in resistance to P. cinnamomi in Arabidopsis, and phosphite-mediated resistance may in some part be through its effect on the stimulation of the PSR and auxin response pathways.


Assuntos
Arabidopsis/microbiologia , Resistência à Doença/imunologia , Ácidos Indolacéticos/metabolismo , Lupinus/microbiologia , Fosfitos/farmacologia , Phytophthora/fisiologia , Transdução de Sinais/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Lupinus/efeitos dos fármacos , Lupinus/metabolismo , Mutação/genética , Fosfatos/deficiência , Fosfatos/farmacologia , Phytophthora/efeitos dos fármacos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Transdução de Sinais/genética , Ácidos Tri-Iodobenzoicos
11.
PLoS One ; 8(2): e56814, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451091

RESUMO

Rhizoctonia solani is an important soil-borne necrotrophic fungal pathogen, with a broad host range and little effective resistance in crop plants. Arabidopsis is resistant to R. solani AG8 but susceptible to R. solani AG2-1. A screen of 36 Arabidopsis ecotypes and mutants affected in the auxin, camalexin, salicylic acid, abscisic acid and ethylene/jasmonic acid pathways did not reveal any variation in response to R. solani and demonstrated that resistance to AG8 was independent of these defense pathways. The Arabidopsis Affymetrix ATH1 Genome array was used to assess global gene expression changes in plants infected with AG8 and AG2-1 at seven days post-infection. While there was considerable overlap in the response, some gene families were differentially affected by AG8 or AG2-1 and included those involved in oxidative stress, cell wall associated proteins, transcription factors and heat shock protein genes. Since a substantial proportion of the gene expression changes were associated with oxidative stress responses, we analysed the role of NADPH oxidases in resistance. While single NADPH oxidase mutants had no effect, a NADPH oxidase double mutant atrbohf atrbohd resulted in an almost complete loss of resistance to AG8, suggesting that reactive oxidative species play an important role in Arabidopsis's resistance to R. solani.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/microbiologia , NADPH Oxidases/genética , Rhizoctonia/patogenicidade , Resistência à Doença/genética , Genômica
12.
Plant Signal Behav ; 6(4): 551-2, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21389781

RESUMO

Microbial pathogens inflict large losses to agriculture annually and thus mechanisms of plant resistance and how to deploy them to enhance disease resistance in crops are foci of much research interest. We recently described the important role of ethylene and Ethylene Response transcription Factors (ERFs), particularly MtERF1-1, in mediating resistance to the fungal pathogen Rhizoctonia solani in the model legume, Medicago truncatula. Previous studies on the closely related AtERF14, a master regulator of ethylene dependent defenses including other ERFs, suggested that in Arabidopsis these defenses were not essential for resistance to the same R. solani isolate but were required for resistance to another fungal pathogen, Fusarium oxysporum. Medicago plants with roots over-expressing MtERF1-1 were challenged with F. oxysporum but showed no altered resistance. These results further support a potential for divergent roles of ethylene associated defenses in different plant hosts responding to the same pathogen.


Assuntos
Arabidopsis/microbiologia , Etilenos/metabolismo , Fusarium/patogenicidade , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Proteínas de Plantas/metabolismo , Rhizoctonia/patogenicidade , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética
13.
Plant Physiol ; 154(2): 861-73, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20713618

RESUMO

The fungal necrotrophic pathogen Rhizoctonia solani is a significant constraint to a range of crops as diverse as cereals, canola, and legumes. Despite wide-ranging germplasm screens in many of these crops, no strong genetic resistance has been identified, suggesting that alternative strategies to improve resistance are required. In this study, we characterize moderate resistance to R. solani anastomosis group 8 identified in Medicago truncatula. The activity of the ethylene- and jasmonate-responsive GCC box promoter element was associated with moderate resistance, as was the induction of the B-3 subgroup of ethylene response transcription factors (ERFs). Genes of the B-1 subgroup showed no significant response to R. solani infection. Overexpression of a B-3 ERF, MtERF1-1, in Medicago roots increased resistance to R. solani as well as an oomycete root pathogen, Phytophthora medicaginis, but not root knot nematode. These results indicate that targeting specific regulators of ethylene defense may enhance resistance to an important subset of root pathogens. We also demonstrate that overexpression of MtERF1-1 enhances disease resistance without apparent impact on nodulation in the A17 background, while overexpression in sickle reduced the hypernodulation phenotype. This suggests that under normal regulation of nodulation, enhanced resistance to root diseases can be uncoupled from symbiotic plant-microbe interactions in the same tissue and that ethylene/ERF regulation of nodule number is distinct from the defenses regulated by B-3 ERFs. Furthermore, unlike the stunted phenotype previously described for Arabidopsis (Arabidopsis thaliana) ubiquitously overexpressing B-3 ERFs, overexpression of MtERF1-1 in M. truncatula roots did not show adverse effects on plant development.


Assuntos
Etilenos/farmacologia , Medicago truncatula/imunologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rhizoctonia/patogenicidade , Simbiose , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Imunidade Vegetal , Proteínas de Plantas/genética , Nodulação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Regiões Promotoras Genéticas , RNA de Plantas/genética , Sinorhizobium meliloti/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Funct Plant Biol ; 37(6): 499-512, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21743794

RESUMO

The analysis of plant-pathogen interactions is a rapidly moving research field and one that is very important for productive agricultural systems. The focus of this review is on the evolution of plant defence responses and the coevolution of their pathogens, primarily from a molecular-genetic perspective. It explores the evolution of the major types of plant defence responses including pathogen associated molecular patterns and effector triggered immunity as well as the forces driving pathogen evolution, such as the mechanisms by which pathogen lineages and species evolve. Advances in our understanding of plant defence signalling, stomatal regulation, R gene-effector interactions and host specific toxins are used to highlight recent insights into the coevolutionary arms race between pathogens and plants. Finally, the review considers the intriguing question of how plants have evolved the ability to distinguish friends such as rhizobia and mycorrhiza from their many foes.

15.
Plant Physiol ; 146(3): 996-1009, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18184733

RESUMO

To achieve a thorough understanding of plant-aphid interactions, it is necessary to investigate in detail both the plant and insect side of the interaction. The pea aphid (PA; Acyrthosiphon pisum) has been selected by an international consortium as the model species for genetics and genomics studies, and the model legume Medicago truncatula is a host of this aphid. In this study, we identified resistance to PA in a M. truncatula line, 'Jester', with well-characterized resistance to a closely related aphid, the bluegreen aphid (BGA; Acyrthosiphon kondoi). The biology of resistance to the two aphid species shared similarity, with resistance in both cases occurring at the level of the phloem, requiring an intact plant and involving a combination of antixenosis, antibiosis, and plant tolerance. In addition, PA resistance cosegregated in 'Jester' with a single dominant gene for BGA resistance. These results raised the possibility that both resistances may be mediated by the same mechanism. This was not supported by the results of gene induction studies, and resistance induced by BGA had no effect on PA feeding. Moreover, different genetic backgrounds containing a BGA resistance gene from the same resistance donor differ in resistance to PA. These results suggest that distinct mechanisms are involved in resistance to these two aphid species. Resistance to PA and BGA in the same genetic background in M. truncatula makes this plant an attractive model for the study of both plant and aphid components of resistant and susceptible plant-aphid interactions.


Assuntos
Afídeos/fisiologia , Interações Hospedeiro-Parasita/genética , Medicago truncatula/parasitologia , Animais , Ciclopentanos/metabolismo , Etilenos/metabolismo , Genes de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Oxilipinas/metabolismo , Floema/fisiologia , Ácido Salicílico/metabolismo , Especificidade da Espécie
16.
Mol Plant Microbe Interact ; 20(1): 82-93, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17249425

RESUMO

Aphids are major insect pests of plants that feed directly from the phloem. We used the model legume Medicago truncatula Gaert. (barrel medic) to elucidate host resistance to aphids and identified a single dominant gene which confers resistance to Acyrthosiphon kondoi Shinji (bluegreen aphid). To understand how this gene conditions resistance to bluegreen aphid, transcription profiling of 23 defense-related genes representing various signaling pathways was undertaken using a pair of near-isogenic lines that are susceptible or resistant to bluegreen aphid. All salicylic acid- and ethylene-responsive genes tested were induced by bluegreen aphid in resistant and susceptible plants, although there were some differences in the magnitude and kinetics of the induction. In contrast, 10 of 13 genes associated with the octadecanoid pathway were induced exclusively in the resistant plants following bluegreen aphid infestation. These results are in contrast to plant-pathogen interactions where similar sets of defense genes typically are induced in compatible interactions, but to a lesser degree and later than in incompatible interactions. Treatment of susceptible plants with methyl jasmonate reduced bluegreen aphid infestation but not to the same levels as the resistant line. Together, these results strongly suggest that the octadecanoid pathway is important for this naturally derived aphid resistance trait.


Assuntos
Afídeos/crescimento & desenvolvimento , Medicago truncatula/genética , Doenças das Plantas/genética , Acetatos/farmacologia , Animais , Ciclopentanos/farmacologia , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Haplótipos , Imunidade Inata/genética , Medicago truncatula/metabolismo , Medicago truncatula/parasitologia , Modelos Teóricos , Oxilipinas , Fenótipo , Floema/genética , Floema/metabolismo , Floema/parasitologia , Doenças das Plantas/parasitologia , Reguladores de Crescimento de Plantas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido Salicílico/farmacologia
17.
Plant Physiol ; 143(1): 400-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17114278

RESUMO

We had previously shown that several transcription factors of the ethylene (ET) response factor (ERF) family were induced with different but overlapping kinetics following challenge of Arabidopsis (Arabidopsis thaliana) with Pseudomonas syringae pv tomato DC3000 (avrRpt2). One of these genes, a transcriptional activator, AtERF14, was induced at the same time as ERF-target genes (ChiB, basic chitinase). To unravel the potential function of AtERF14 in regulating the plant defense response, we have analyzed gain- and loss-of-function mutants. We show here that AtERF14 has a prominent role in the plant defense response, since overexpression of AtERF14 had dramatic effects on both plant phenotype and defense gene expression and AtERF14 loss-of-function mutants showed impaired induction of defense genes following exogenous ET treatment and increased susceptibility to Fusarium oxysporum. Moreover, the expression of other ERF genes involved in defense and ET/jasmonic acid responses, such as ERF1 and AtERF2, depends on AtERF14 expression. A number of ERFs have been shown to function in the defense response through overexpression. However, the effect of loss of AtERF14 function on defense gene expression, pathogen resistance, and regulation of the expression of other ERF genes is unique thus far. These results suggest a unique role for AtERF14 in regulating the plant defense response.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fusarium/fisiologia , Regulação da Expressão Gênica de Plantas , Imunidade Inata/genética , Mutação , Fenótipo , Pseudomonas syringae/fisiologia , Rhizoctonia/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Funct Plant Biol ; 32(1): 1-19, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32689107

RESUMO

To overcome the attack of invading pathogens, a plant's defence system relies on preformed and induced responses. The induced responses are activated following detection of a pathogen, with the subsequent transmission of signals and orchestrated cellular events aimed at eliminating the pathogen and preventing its spread. Numerous studies are proving that the activated signalling pathways are not simply linear, but rather, form complex networks where considerable cross talk takes place. This review covers the recent application of powerful genetic and genomic approaches to identify key defence signalling pathways in the model plant Arabidopsis thaliana (L.) Heynh. The identification of key regulatory components of these pathways may offer new approaches to increase the defence capabilities of crop plants.

19.
Funct Plant Biol ; 32(1): 21-34, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32689108

RESUMO

Diseases of plants are a major problem for agriculture world wide. Understanding the mechanisms employed by plants to defend themselves against pathogens may lead to novel strategies to enhance disease resistance in crop plants. Much of the research in this area has been conducted with Arabidopsis as a model system, and this review focuses on how relevant the knowledge generated from this model system will be for increasing resistance in crop plants. In addition, the progress made using other model plant species is discussed. While there appears to be substantial similarity between the defence responses of Arabidopsis and other plants, there are also areas where significant differences are evident. For this reason it is also necessary to increase our understanding of the specific aspects of the defence response that cannot be studied using Arabidopsis as a model.

20.
Plant Cell ; 16(12): 3460-79, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15548743

RESUMO

The plant hormones abscisic acid (ABA), jasmonic acid (JA), and ethylene are involved in diverse plant processes, including the regulation of gene expression during adaptive responses to abiotic and biotic stresses. Previously, ABA has been implicated in enhancing disease susceptibility in various plant species, but currently very little is known about the molecular mechanisms underlying this phenomenon. In this study, we obtained evidence that a complex interplay between ABA and JA-ethylene signaling pathways regulate plant defense gene expression and disease resistance. First, we showed that exogenous ABA suppressed both basal and JA-ethylene-activated transcription from defense genes. By contrast, ABA deficiency as conditioned by the mutations in the ABA1 and ABA2 genes, which encode enzymes involved in ABA biosynthesis, resulted in upregulation of basal and induced transcription from JA-ethylene responsive defense genes. Second, we found that disruption of AtMYC2 (allelic to JASMONATE INSENSITIVE1 [JIN1]), encoding a basic helix-loop-helix Leu zipper transcription factor, which is a positive regulator of ABA signaling, results in elevated levels of basal and activated transcription from JA-ethylene responsive defense genes. Furthermore, the jin1/myc2 and aba2-1 mutants showed increased resistance to the necrotrophic fungal pathogen Fusarium oxysporum. Finally, using ethylene and ABA signaling mutants, we showed that interaction between ABA and ethylene signaling is mutually antagonistic in vegetative tissues. Collectively, our results indicate that the antagonistic interactions between multiple components of ABA and the JA-ethylene signaling pathways modulate defense and stress responsive gene expression in response to biotic and abiotic stresses.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Imunidade Inata/fisiologia , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fusarium/fisiologia , Dados de Sequência Molecular , Oxilipinas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transdução de Sinais/genética , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA