Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nitric Oxide ; 146: 31-36, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574950

RESUMO

Carbon monoxide (CO) poisoning is a leading cause of poison-related morbidity and mortality worldwide. By binding to hemoglobin and other heme-containing proteins, CO reduces oxygen delivery and produces tissue damage. Prompt treatment of CO-poisoned patients is necessary to prevent acute and long-term complications. Oxygen therapy is the only available treatment. Visible light has been shown to selectively dissociate CO from hemoglobin with high efficiency without affecting oxygen affinity. Pulmonary phototherapy has been shown to accelerate the rate of CO elimination in CO poisoned mice and rats when applied directly to the lungs or via intra-esophageal or intra-pleural optical fibers. The extracorporeal removal of CO using a membrane oxygenator with optimal characteristic for blood exposure to light has been shown to accelerate the rate of CO illumination in rats with or without lung injury and in pigs. The development of non-invasive techniques to apply pulmonary phototherapy and the development of a compact, highly efficient membrane oxygenator for the extracorporeal removal of CO in humans may provide a significant advance in the treatment of CO poisoning.


Assuntos
Intoxicação por Monóxido de Carbono , Fototerapia , Intoxicação por Monóxido de Carbono/terapia , Animais , Humanos , Fototerapia/métodos , Monóxido de Carbono
2.
Lasers Surg Med ; 55(6): 590-600, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37253390

RESUMO

BACKGROUND AND OBJECTIVES: Approximately 50,000 emergency department visits per year due to carbon monoxide (CO) poisoning occur in the United States alone. Tissue hypoxia can occur at very low CO concentration exposures because CO binds with a 250-fold higher affinity than oxygen to hemoglobin. The most effective therapy is 100% hyperbaric oxygen (HBO) respiration. However, there are only a limited number of cases with ready accessibility to the specialized HBO chambers. In previous studies, we developed an extracorporeal veno-venous membrane oxygenator that facilitates exposure of blood to an external visible light source to photo-dissociate carboxyhemoglobin (COHb) and significantly increase CO removal from CO-poisoned blood (photo-extracorporeal veno-venous membrane oxygenator [p-ECMO]). One objective of this study was to describe in vitro experiments with different laser wavelength sources to compare CO elimination rates in a small unit-cell ECMO device integrated with a light-diffusing optical fiber. A second objective was to develop a mathematical model that predicts CO elimination rates in the unit-cell p-ECMO  device design upon which larger devices can be based. STUDY DESIGN/MATERIAL AND METHODS: Two small unit-cell p-ECMO devices consisted of a plastic capillary with a length and inside diameter of 10 cm and 1.15 mm, respectively. Either five (4-1 device) or seven (6-1 device) gas exchange tubes were placed in the plastic capillary and a light-diffusing fiber was inserted into one of the gas exchange tubes. Light from lasers emitting either 635 nm or 465 nm wavelengths was coupled into the light-diffusing fiber as oxygen flowed through the gas exchange membranes. To assess the ability of the device to remove CO from blood in vitro, the percent COHb reduction in a single pass through the device was assessed with and without light. The Navier Stokes equations, Carreau-Yesuda model, Boltzman equation for light distribution, and hemoglobin kinetic rate equations, including photo-dissociation, were combined in a mathematical model to predict COHb elimination in the experiments. RESULTS: For the unit-cell devices, the COHb removal rate increases with increased 635 nm laser power, increased blood time in the device, and greater gas exchange membrane surface-to-blood volume ratio. The 6-1 device COHb half-life versus that of the 4-1 device with 4 W at 635 nm light was 1.5 min versus 4.25 min, respectively. At 1 W laser power, 635 nm and 465 nm exhibited similar CO removal rates. The COHb half-life times of the 6-1 device were 1.25, 2.67, and 8.5 min at 635 nm (4 W), 465 nm (1 W), and 100% oxygen only, respectively. The mathematical model predicted the experimental results. An analysis of the in vivo COHb half-life of oxygen respiration therapy versus an adjunct therapy with a p-ECMO device and oxygen respiration shows a reduction from 90 min to as low as 10 min, depending on the device design. CONCLUSION: In this study, we experimentally studied and developed a mathematical model of a small unit-cell ECMO device integrated with a light-diffusing fiber illuminated with laser light. The unit-cell device forms the basis for a larger device and, in an adjunct therapy with oxygen respiration, has the potential to remove COHb at much higher rates than oxygen therapy alone. The mathematical model can be used to optimize the design in practical implementations to quickly and efficiently remove CO from CO-poisoned blood.


Assuntos
Intoxicação por Monóxido de Carbono , Humanos , Intoxicação por Monóxido de Carbono/terapia , Oxigenadores de Membrana , Hemoglobinas/análise , Hemoglobinas/metabolismo , Carboxihemoglobina/análise , Carboxihemoglobina/metabolismo , Oxigênio , Modelos Teóricos
3.
JAMA Netw Open ; 3(9): e2017337, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926117

RESUMO

Importance: Preclinical studies have shown that transcranial near-infrared low-level light therapy (LLLT) administered after traumatic brain injury (TBI) confers a neuroprotective response. Objectives: To assess the feasibility and safety of LLLT administered acutely after a moderate TBI and the neuroreactivity to LLLT through quantitative magnetic resonance imaging metrics and neurocognitive assessment. Design, Setting, and Participants: A randomized, single-center, prospective, double-blind, placebo-controlled parallel-group trial was conducted from November 27, 2015, through July 11, 2019. Participants included 68 men and women with acute, nonpenetrating, moderate TBI who were randomized to LLLT or sham treatment. Analysis of the response-evaluable population was conducted. Interventions: Transcranial LLLT was administered using a custom-built helmet starting within 72 hours after the trauma. Magnetic resonance imaging was performed in the acute (within 72 hours), early subacute (2-3 weeks), and late subacute (approximately 3 months) stages of recovery. Clinical assessments were performed concomitantly and at 6 months via the Rivermead Post-Concussion Questionnaire (RPQ), a 16-item questionnaire with each item assessed on a 5-point scale ranging from 0 (no problem) to 4 (severe problem). Main Outcomes and Measures: The number of participants to successfully and safely complete LLLT without any adverse events within the first 7 days after the therapy was the primary outcome measure. Secondary outcomes were the differential effect of LLLT on MR brain diffusion parameters and RPQ scores compared with the sham group. Results: Of the 68 patients who were randomized (33 to LLLT and 35 to sham therapy), 28 completed at least 1 LLLT session. No adverse events referable to LLLT were reported. Forty-three patients (22 men [51.2%]; mean [SD] age, 50.49 [17.44] years]) completed the study with at least 1 magnetic resonance imaging scan: 19 individuals in the LLLT group and 24 in the sham treatment group. Radial diffusivity (RD), mean diffusivity (MD), and fractional anisotropy (FA) showed significant time and treatment interaction at 3-month time point (RD: 0.013; 95% CI, 0.006 to 0.019; P < .001; MD: 0.008; 95% CI, 0.001 to 0.015; P = .03; FA: -0.018; 95% CI, -0.026 to -0.010; P < .001).The LLLT group had lower RPQ scores, but this effect did not reach statistical significance (time effect P = .39, treatment effect P = .61, and time × treatment effect P = .91). Conclusions and Relevance: In this randomized clinical trial, LLLT was feasible in all patients and did not exhibit any adverse events. Light therapy altered multiple diffusion tensor parameters in a statistically significant manner in the late subacute stage. This study provides the first human evidence to date that light therapy engages neural substrates that play a role in the pathophysiologic factors of moderate TBI and also suggests diffusion imaging as the biomarker of therapeutic response. Trial Registration: ClinicalTrials.gov Identifier: NCT02233413.


Assuntos
Lesões Encefálicas Traumáticas/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , Síndrome Pós-Concussão/fisiopatologia , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Anisotropia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/fisiopatologia , Imagem de Tensor de Difusão , Método Duplo-Cego , Estudos de Viabilidade , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Placebos , Índice de Gravidade de Doença , Inquéritos e Questionários , Resultado do Tratamento
4.
J Am Acad Dermatol ; 82(6): 1501-1510, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32035944

RESUMO

In 2017, a National Rosacea Society Expert Committee developed and published an updated classification of rosacea to reflect current insights into rosacea pathogenesis, pathophysiology, and management. These developments suggest that a multivariate disease process underlies the various clinical manifestations of the disorder. The new system is consequently based on phenotypes that link to this process, providing clear parameters for research and diagnosis as well as encouraging clinicians to assess and treat the disorder as it may occur in each individual. Meanwhile, a range of therapies has become available for rosacea, and their roles have been increasingly defined in clinical practice as the disorder has become more widely recognized. This update is intended to provide a comprehensive summary of management options, including expert evaluations, to serve as a guide for tailoring treatment and care on an individual basis to achieve optimal patient outcomes.


Assuntos
Rosácea/diagnóstico , Rosácea/terapia , Humanos
5.
Laryngoscope ; 117(8): 1500-4, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17585283

RESUMO

OBJECTIVES: Angiolytic lasers have been shown to be an effective treatment strategy for laryngeal papillomatosis. These lasers precisely target hemoglobin within the microcirculation of papillary lesions. We have previously demonstrated the advantages of the fiber-based pulsed 532-nm potassium-titanyl-phosphate (KTP) laser in an office setting (with local anesthesia). This investigation provides the first report of the pulsed-KTP laser during microlaryngoscopy under general anesthesia. STUDY DESIGN: A prospective pilot study was performed in 55 adult patients with laryngeal papillomatosis to determine disease response. METHODS: During suspension microlaryngoscopy, a solid-state 532 nm pulsed-KTP laser was used (15 ms pulse width, 5.25-7.5 J/pulse maximum output, 2 Hz repetition rate, 0.4 mm fiber, approximately 20-80 J/cm2 fluence) to treat laryngeal papillomatosis. All patients underwent postoperative videolaryngoscopy to assess disease regression based on a previously used rating scale. RESULTS: Thirty-seven patients underwent 55 procedures during the 18-month study period. Near-term follow-up with an early postoperative evaluation was available in 23 patients (35 procedures). Fourteen patients (20 procedures) were geographically distant and only returned after developing symptoms with significant disease recurrence. Of the 35 procedures in which near-term follow-up was available, 90% or greater disease regression was achieved in 28 of 35 (80%), 75% to 89% disease regression was achieved in 4 of 35 (11%), and 50% to 74% disease regression in 3 of 35 (9%). Anterior-commissure disease was present in 51 of 55 (93%) cases, and no new webbing/synechia occurred. All patients reported that their vocal function improved after treatment. CONCLUSIONS: The 532 nm pulsed-KTP laser was effective for treating recurrent respiratory papillomatosis, which was similar to our experience as an office-based procedure.


Assuntos
Anestesia Geral , Neoplasias Laríngeas/cirurgia , Terapia a Laser/instrumentação , Papiloma/cirurgia , Adulto , Idoso , Desenho de Equipamento , Feminino , Seguimentos , Humanos , Neoplasias Laríngeas/patologia , Laringoscopia , Masculino , Pessoa de Meia-Idade , Papiloma/patologia , Projetos Piloto , Estudos Prospectivos , Índice de Gravidade de Doença , Resultado do Tratamento , Gravação em Vídeo
6.
J Biomed Opt ; 12(1): 014005, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17343480

RESUMO

Nonmelanoma skin cancer is the most common form of human cancer, often resulting in high morbidity. Low visual contrast of these tumors makes their delineation a challenging problem. Employing a linearly polarized monochromatic light source and a wide-field CCD camera, we have developed a technique for fluorescence polarization imaging of the nonmelanoma cancers stained using antibiotics from the tetracycline family. To determine the feasibility of the method, fluorescence polarization images of 86 thick, fresh cancer excisions were studied. We found that the level of endogenous fluorescence polarization was much lower than that of exogenous, and that the average values of fluorescence polarization of tetracycline derivatives were significantly higher in cancerous as compared to normal tissue. Out of 86 tumors [54 stained in demeclocycline (DMN) and 32 in tetracycline (TCN)], in 79 cases (51-DMN, 28-TCN) the location, size, and shape of the lesions were identified accurately. The results of this trial indicate that nonmelanoma skin tumors can be distinguished from healthy tissue based on the differences in exogenous fluorescence polarization of TCN and/or DMN. Therefore, the developed technique can provide an important new tool for image-guided cancer surgery.


Assuntos
Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Microscopia de Polarização/métodos , Neoplasias Cutâneas/patologia , Tetraciclina , Humanos , Melanoma/patologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA