Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(4): e0106023, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37338298

RESUMO

Coronaviruses (CoVs) encode nonstructural proteins 1-16 (nsps 1-16) which form replicase complexes that mediate viral RNA synthesis. Remdesivir (RDV) is an adenosine nucleoside analog antiviral that inhibits CoV RNA synthesis. RDV resistance mutations have been reported only in the nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp). We here show that a substitution mutation in the nsp13-helicase (nsp13-HEL A335V) of the betacoronavirus murine hepatitis virus (MHV) that was selected during passage with the RDV parent compound confers partial RDV resistance independently and additively when expressed with co-selected RDV resistance mutations in the nsp12-RdRp. The MHV A335V substitution did not enhance replication or competitive fitness compared to WT MHV and remained sensitive to the active form of the cytidine nucleoside analog antiviral molnupiravir (MOV). Biochemical analysis of the SARS-CoV-2 helicase encoding the homologous substitution (A336V) demonstrates that the mutant protein retained the ability to associate with the core replication proteins nsps 7, 8, and 12 but had impaired helicase unwinding and ATPase activity. Together, these data identify a novel determinant of nsp13-HEL enzymatic activity, define a new genetic pathway for RDV resistance, and demonstrate the importance of surveillance for and testing of helicase mutations that arise in SARS-CoV-2 genomes. IMPORTANCE Despite the development of effective vaccines against COVID-19, the continued circulation and emergence of new variants support the need for antivirals such as RDV. Understanding pathways of antiviral resistance is essential for surveillance of emerging variants, development of combination therapies, and for identifying potential new targets for viral inhibition. We here show a novel RDV resistance mutation in the CoV helicase also impairs helicase functions, supporting the importance of studying the individual and cooperative functions of the replicase nonstructural proteins 7-16 during CoV RNA synthesis. The homologous nsp13-HEL mutation (A336V) has been reported in the GISAID database of SARS-CoV-2 genomes, highlighting the importance of surveillance of and genetic testing for nucleoside analog resistance in the helicase.


Assuntos
COVID-19 , Vírus da Hepatite Murina , Animais , Camundongos , Humanos , Nucleosídeos/farmacologia , Vacinas contra COVID-19 , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Replicação Viral/genética , Tratamento Farmacológico da COVID-19 , Mutação , Vírus da Hepatite Murina/genética , Antivirais/farmacologia , Antivirais/química , RNA Polimerase Dependente de RNA/metabolismo , RNA , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
2.
J Virol ; 96(16): e0084122, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35924922

RESUMO

Coronaviruses (CoVs) initiate replication by translation of the positive-sense RNA genome into the replicase polyproteins connecting 16 nonstructural protein domains (nsp1-16), which are subsequently processed by viral proteases to yield mature nsp. For the betacoronavirus murine hepatitis virus (MHV), total inhibition of translation or proteolytic processing of replicase polyproteins results in rapid cessation of RNA synthesis. The nsp5-3CLpro (Mpro) processes nsps7-16, which assemble into functional replication-transcription complexes (RTCs), including the enzymatic nsp12-RdRp and nsp14-exoribonuclease (ExoN)/N7-methyltransferase. The nsp14-ExoN activity mediates RNA-dependent RNA proofreading, high-fidelity RNA synthesis, and replication. To date, the solved partial RTC structures, biochemistry, and models use or assume completely processed, mature nsp. Here, we demonstrate that in MHV, engineered deletion of the cleavage sites between nsp13-14 and nsp14-15 allowed recovery of replication-competent virus. Compared to wild-type (WT) MHV, the nsp13-14 and nsp14-15 cleavage deletion mutants demonstrated delayed replication kinetics, impaired genome production, altered abundance and patterns of recombination, and impaired competitive fitness. Further, the nsp13-14 and nsp14-15 mutant viruses demonstrated mutation frequencies that were significantly higher than with the WT. The results demonstrate that cleavage of nsp13-14 or nsp14-15 is not required for MHV viability and that functions of the RTC/nsp14-ExoN are impaired when assembled with noncleaved intermediates. These data will inform future genetic, structural, biochemical, and modeling studies of coronavirus RTCs and nsp 13, 14, and 15 and may reveal new approaches for inhibition or attenuation of CoV infection. IMPORTANCE Coronavirus replication requires proteolytic maturation of the nonstructural replicase proteins to form the replication-transcription complex. Coronavirus replication-transcription complex models assume mature subunits; however, mechanisms of coronavirus maturation and replicase complex formation have yet to be defined. Here, we show that for the coronavirus murine hepatitis virus, cleavage between the nonstructural replicase proteins nsp13-14 and nsp14-15 is not required for replication but does alter RNA synthesis and recombination. These results shed new light on the requirements for coronavirus maturation and replication-transcription complex assembly, and they may reveal novel therapeutic targets and strategies for attenuation.


Assuntos
Exorribonucleases , Aptidão Genética , Vírus da Hepatite Murina , Proteólise , RNA Viral , Proteínas não Estruturais Virais , Proteínas do Complexo da Replicase Viral , Animais , Exorribonucleases/genética , Exorribonucleases/metabolismo , Camundongos , Vírus da Hepatite Murina/enzimologia , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/crescimento & desenvolvimento , Vírus da Hepatite Murina/fisiologia , Mutação , Poliproteínas/química , Poliproteínas/genética , Poliproteínas/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , Recombinação Genética , Transcrição Gênica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas do Complexo da Replicase Viral/química , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/metabolismo , Replicação Viral
3.
PLoS Pathog ; 17(1): e1009226, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465137

RESUMO

Recombination is proposed to be critical for coronavirus (CoV) diversity and emergence of SARS-CoV-2 and other zoonotic CoVs. While RNA recombination is required during normal CoV replication, the mechanisms and determinants of CoV recombination are not known. CoVs encode an RNA proofreading exoribonuclease (nsp14-ExoN) that is distinct from the CoV polymerase and is responsible for high-fidelity RNA synthesis, resistance to nucleoside analogues, immune evasion, and virulence. Here, we demonstrate that CoVs, including SARS-CoV-2, MERS-CoV, and the model CoV murine hepatitis virus (MHV), generate extensive and diverse recombination products during replication in culture. We show that the MHV nsp14-ExoN is required for native recombination, and that inactivation of ExoN results in decreased recombination frequency and altered recombination products. These results add yet another critical function to nsp14-ExoN, highlight the uniqueness of the evolved coronavirus replicase, and further emphasize nsp14-ExoN as a central, completely conserved, and vulnerable target for inhibitors and attenuation of SARS-CoV-2 and future emerging zoonotic CoVs.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Exorribonucleases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/virologia , Infecções por Coronavirus/virologia , Exorribonucleases/genética , Humanos , Recombinação Genética/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Proteínas não Estruturais Virais/genética , Replicação Viral/genética
4.
Nat Struct Mol Biol ; 27(9): 855-862, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32747784

RESUMO

The mature retrovirus capsid consists of a variably curved lattice of capsid protein (CA) hexamers and pentamers. High-resolution structures of the curved assembly, or in complex with host factors, have not been available. By devising cryo-EM methodologies for exceedingly flexible and pleomorphic assemblies, we have determined cryo-EM structures of apo-CA hexamers and in complex with cyclophilin A (CypA) at near-atomic resolutions. The CA hexamers are intrinsically curved, flexible and asymmetric, revealing the capsomere and not the previously touted dimer or trimer interfaces as the key contributor to capsid curvature. CypA recognizes specific geometries of the curved lattice, simultaneously interacting with three CA protomers from adjacent hexamers via two noncanonical interfaces, thus stabilizing the capsid. By determining multiple structures from various helical symmetries, we further revealed the essential plasticity of the CA molecule, which allows formation of continuously curved conical capsids and the mechanism of capsid pattern sensing by CypA.


Assuntos
Proteínas do Capsídeo/metabolismo , Ciclofilina A/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Células HEK293 , HIV-1/química , HIV-1/ultraestrutura , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
5.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31413124

RESUMO

Particle maturation is a critical step in the HIV-1 replication cycle that requires proteolytic cleavage of the Gag polyprotein into its constitutive proteins: the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 proteins. The accurate and efficient cleavage of Gag is essential for virion infectivity; inhibitors of the viral protease are potent antivirals, and substitutions in Gag that prevent its cleavage result in reduced HIV-1 infectivity. In a previous study, a mutation inhibiting cleavage at the MA-CA junction was observed to potently inhibit virus infection: incorporation of small amounts of uncleaved MA-CA protein into HIV-1 particles inhibited infectivity by ∼95%, and the resulting viral particles exhibited aberrant capsids. Here we report a detailed mechanistic analysis of HIV-1 particles bearing uncleaved MA-CA protein. We show that the particles contain stable cores and can efficiently saturate host restriction by TRIMCyp in target cells. We further show that MA-CA associates with CA in particles without detectably affecting the formation of intermolecular CA interfaces. Incorporation of MA-CA did not markedly affect reverse transcription in infected cells, but nuclear entry was impaired and integration targeting was altered. Additionally, results from mutational analysis of Gag revealed that membrane-binding elements of MA contribute to the antiviral activity of uncleaved MA-CA protein. Our results suggest that small amounts of partially processed Gag subunits coassemble with CA during virion maturation, resulting in impaired capsid functions.IMPORTANCE To become infectious, newly formed HIV-1 particles undergo a process of maturation in which the viral polyproteins are cleaved into smaller components. A previous study demonstrated that inclusion of even small quantities of an uncleavable mutant Gag polyprotein results in a strong reduction in virus infectivity. Here we show that the mechanism of transdominant inhibition by uncleavable Gag involves inhibition of nuclear entry and alteration of viral integration sites. Additionally, the results of mutational analysis suggest that the membrane-binding activity of Gag is a major requirement for the antiviral activity. These results further define the antiviral mechanism of uncleavable Gag, which may be useful for exploiting this effect to develop new antivirals.


Assuntos
Proteínas do Capsídeo/metabolismo , Núcleo Celular/metabolismo , Infecções por HIV/virologia , Proteínas Virais de Fusão/metabolismo , Proteínas da Matriz Viral/metabolismo , Integração Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas do Capsídeo/genética , Núcleo Celular/virologia , Células HEK293 , HIV-1/fisiologia , Humanos , Nucleocapsídeo , Transcrição Reversa , Proteínas Virais de Fusão/genética , Proteínas da Matriz Viral/genética , Vírion , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
6.
J Virol ; 89(4): 2080-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25473044

RESUMO

UNLABELLED: A common feature of infection by positive-sense RNA virus is the modification of host cell cytoplasmic membranes that serve as sites of viral RNA synthesis. Coronaviruses induce double-membrane vesicles (DMVs), but the role of DMVs in replication and virus fitness remains unclear. Coronaviruses encode 16 nonstructural proteins (nsps), three of which, nsp3, nsp4, and nsp6, are necessary and sufficient for DMV formation. It has been shown previously that mutations in murine hepatitis virus (MHV) nsp4 loop 1 that alter nsp4 glycosylation are associated with disrupted DMV formation and result in changes in virus replication and RNA synthesis. However, it is not known whether DMV morphology or another function of nsp4 glycosylation is responsible for effects on virus replication. In this study, we tested whether mutations across nsp4, both alone and in combination with mutations that abolish nsp4 glycosylation, affected DMV formation, replication, and fitness. Residues in nsp4 distinct from glycosylation sites, particularly in the endoplasmic reticulum (ER) luminal loop 1, independently disrupted both the number and morphology of DMVs and exacerbated DMV changes associated with loss of glycosylation. Mutations that altered DMV morphology but not glycosylation did not affect virus fitness while viruses lacking nsp4 glycosylation exhibited a loss in fitness. The results support the hypothesis that DMV morphology and numbers are not key determinants of virus fitness. The results also suggest that nsp4 glycosylation serves roles in replication in addition to the organization and stability of MHV-induced double-membrane vesicles. IMPORTANCE: All positive-sense RNA viruses modify host cytoplasmic membranes for viral replication complex formation. Thus, defining the mechanisms of virus-induced membrane modifications is essential for both understanding virus replication and development of novel approaches to virus inhibition. Coronavirus-induced membrane changes include double-membrane vesicles (DMVs) and convoluted membranes. Three viral nonstructural proteins (nsps), nsp3, nsp4, and nsp6, are known to be required for DMV formation. It is unknown how these proteins induce membrane modification or which regions of the proteins are involved in DMV formation and stability. In this study, we show that mutations across nsp4 delay virus replication and disrupt DMV formation and that loss of nsp4 glycosylation is associated with a substantial fitness cost. These results support a critical role for nsp4 in DMV formation and virus fitness.


Assuntos
Membrana Celular/virologia , Vírus da Hepatite Murina/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Análise Mutacional de DNA , Glicosilação , Vírus da Hepatite Murina/genética , Mutação de Sentido Incorreto , RNA Viral/biossíntese , Proteínas não Estruturais Virais/genética
7.
Theor Appl Genet ; 118(2): 295-303, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18839129

RESUMO

Bread wheat (Triticum aestivum L.) produces glutenin storage proteins in the endosperm. The HMW glutenins confer distinct viscoelastic properties to bread dough. The genetics of HMW glutenin proteins have been extensively studied, and information has accumulated about individual subunits, chromosomal locations and DNA sequences, but little is known about the regulators of the HMW glutenins. This investigation addressed the question of glutenin regulators. Expression of the glutenins was analyzed using QRT-PCR in ditelosomic (dt) Chinese Spring (CS) lines. Primers were designed for each of 4 CS glutenin genes and a control, non-storage protein endosperm-specific gene Agp-L (ADP-glucose pyrophosphorylase). Each line represents CS wheat, lacking one chromosome arm. The effect of a missing arm could feasibly cause an increase, decrease or no change in expression. For each HMW glutenin, results indicated there were, on average, 8 chromosome arms with an up-regulatory effect and only one instance of a down-regulatory effect. There were significant correlations between orthologous and paralogous HMW glutenins for effects of chromosome groups B and D. Some or all the glutenin alleles shared regulatory loci on chromosome arms 2BS, 7BS, 4DS, 5DS and 6DS, and Agp-L shared regulatory loci with glutenins on arms 7AS, 7BS, 2DS, 3DS, 4DS and 5DS. These results suggest a few chromosome arms contain putative regulatory genes affecting the expression of conserved cis elements of 4 HMW glutenin and Agp-L genes in CS. Regulation by common genes implies the regulators have diverged little from the common wheat ancestor, and furthermore, some regulation may be shared by endosperm-specific-genes. Significant common regulators have practical implications.


Assuntos
Regulação da Expressão Gênica de Plantas , Glutens/genética , Proteínas de Plantas/genética , Triticum/genética , Glutens/metabolismo , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA